

# CHAPTER 9

# **Hypothesis Tests**

### CONTENTS

STATISTICS IN PRACTICE: JOHN MORRELL & COMPANY

- 9.1 DEVELOPING NULL AND ALTERNATIVE HYPOTHESES The Alternative Hypothesis as a Research Hypothesis The Null Hypothesis as an Assumption to Be Challenged Summary of Forms for Null and Alternative Hypotheses
- 9.2 TYPE I AND TYPE II ERRORS
- 9.3 POPULATION MEAN:  $\sigma$  KNOWN One-Tailed Test Two-Tailed Test Summary and Practical Advice Relationship Between Interval Estimation and Hypothesis Testing

- 9.4 POPULATION MEAN: σ UNKNOWN One-Tailed Test Two-Tailed Test Summary and Practical Advice
- 9.5 POPULATION PROPORTION Summary
- 9.6 HYPOTHESIS TESTING AND DECISION MAKING
- 9.7 CALCULATING THE PROBABILITY OF TYPE II ERRORS
- 9.8 DETERMINING THE SAMPLE SIZE FOR A HYPOTHESIS TEST ABOUT A POPULATION MEAN

### **STATISTICS** (*in*) **PRACTICE**

#### JOHN MORRELL & COMPANY\*

#### CINCINNATI, OHIO

John Morrell & Company, which began in England in 1827, is considered the oldest continuously operating meat manufacturer in the United States. It is a wholly owned and independently managed subsidiary of Smithfield Foods, Smithfield, Virginia. John Morrell & Company offers an extensive product line of processed meats and fresh pork to consumers under 13 regional brands including John Morrell, E-Z-Cut, Tobin's First Prize, Dinner Bell, Hunter, Kretschmar, Rath, Rodeo, Shenson, Farmers Hickory Brand, Iowa Quality, and Peyton's. Each regional brand enjoys high brand recognition and loyalty among consumers.

Market research at Morrell provides management with up-to-date information on the company's various products and how the products compare with competing brands of similar products. A recent study compared a Beef Pot Roast made by Morrell to similar beef products from two major competitors. In the three-product comparison test, a sample of consumers was used to indicate how the products rated in terms of taste, appearance, aroma, and overall preference.

One research question concerned whether the Beef Pot Roast made by Morrell was the preferred choice of more than 50% of the consumer population. Letting p indicate the population proportion preferring Morrell's product, the hypothesis test for the research question is as follows:

$$H_0: p \le .50$$
  
 $H_a: p > .50$ 

The null hypothesis  $H_0$  indicates the preference for Morrell's product is less than or equal to 50%. If the



Fully cooked entrees allow consumers to heat and serve in the same microwaveable tray. © Courtesy of John Morrell's Convenient Cuisine products.

sample data support rejecting  $H_0$  in favor of the alternative hypothesis  $H_a$ , Morrell will draw the research conclusion that in a three-product comparison, their Beef Pot Roast is preferred by more than 50% of the consumer population.

In an independent taste test study using a sample of 224 consumers in Cincinnati, Milwaukee, and Los Angeles, 150 consumers selected the Beef Pot Roast made by Morrell as the preferred product. Using statistical hypothesis testing procedures, the null hypothesis  $H_0$  was rejected. The study provided statistical evidence supporting  $H_a$  and the conclusion that the Morrell product is preferred by more than 50% of the consumer population.

The point estimate of the population proportion was  $\bar{p} = 150/224 = .67$ . Thus, the sample data provided support for a food magazine advertisement showing that in a three-product taste comparison, Beef Pot Roast made by Morrell was "preferred 2 to 1 over the competition."

In this chapter we will discuss how to formulate hypotheses and how to conduct tests like the one used by Morrell. Through the analysis of sample data, we will be able to determine whether a hypothesis should or should not be rejected.

In Chapters 7 and 8 we showed how a sample could be used to develop point and interval estimates of population parameters. In this chapter we continue the discussion of statistical inference by showing how hypothesis testing can be used to determine whether a statement about the value of a population parameter should or should not be rejected.

In hypothesis testing we begin by making a tentative assumption about a population parameter. This tentative assumption is called the **null hypothesis** and is denoted by  $H_0$ . We then define another hypothesis, called the **alternative hypothesis**, which is the opposite of what is stated in the null hypothesis. The alternative hypothesis is denoted by  $H_a$ .

<sup>\*</sup>The authors are indebted to Marty Butler, Vice President of Marketing, John Morrell, for providing this Statistics in Practice.

The hypothesis testing procedure uses data from a sample to test the two competing statements indicated by  $H_0$  and  $H_a$ .

This chapter shows how hypothesis tests can be conducted about a population mean and a population proportion. We begin by providing examples that illustrate approaches to developing null and alternative hypotheses.

9.1

# **Developing Null and Alternative Hypotheses**

It is not always obvious how the null and alternative hypotheses should be formulated. Care must be taken to structure the hypotheses appropriately so that the hypothesis testing conclusion provides the information the researcher or decision maker wants. The context of the situation is very important in determining how the hypotheses should be stated. All hypothesis testing applications involve collecting a sample and using the sample results to provide evidence for drawing a conclusion. Good questions to consider when formulating the null and alternative hypotheses are, What is the purpose of collecting the sample? What conclusions are we hoping to make?

In the chapter introduction, we stated that the null hypothesis  $H_0$  is a tentative assumption about a population parameter such as a population mean or a population proportion. The alternative hypothesis  $H_a$  is a statement that is the opposite of what is stated in the null hypothesis. In some situations it is easier to identify the alternative hypothesis first and then develop the null hypothesis. In other situations it is easier to identify the null hypothesis first and then develop the alternative hypothesis. We will illustrate these situations in the following examples.

### The Alternative Hypothesis as a Research Hypothesis

Many applications of hypothesis testing involve an attempt to gather evidence in support of a research hypothesis. In these situations, it is often best to begin with the alternative hypothesis and make it the conclusion that the researcher hopes to support. Consider a particular automobile that currently attains a fuel efficiency of 24 miles per gallon in city driving. A product research group has developed a new fuel injection system designed to increase the miles-per-gallon rating. The group will run controlled tests with the new fuel injection system provides more miles per gallon than the current system.

Several new fuel injection units will be manufactured, installed in test automobiles, and subjected to research-controlled driving conditions. The sample mean miles per gallon for these automobiles will be computed and used in a hypothesis test to determine if it can be concluded that the new system provides more than 24 miles per gallon. In terms of the population mean miles per gallon  $\mu$ , the research hypothesis  $\mu > 24$  becomes the alternative hypothesis. Since the current system provides an average or mean of 24 miles per gallon, we will make the tentative assumption that the new system is not any better than the current system and choose  $\mu \leq 24$  as the null hypothesis. The null and alternative hypotheses are:

$$H_0: \mu \le 24$$
  
 $H_a: \mu > 24$ 

If the sample results lead to the conclusion to reject  $H_0$ , the inference can be made that  $H_a: \mu > 24$  is true. The researchers have the statistical support to state that the new fuel injection system increases the mean number of miles per gallon. The production of automobiles with the new fuel injection system should be considered. However, if the sample results lead to the conclusion that  $H_0$  cannot be rejected, the researchers cannot conclude

Learning to correctly formulate hypotheses will take some practice. Expect some initial confusion over the proper choice of the null and alternative hypotheses. The examples in this section are intended to provide guidelines. The conclusion that the research hypothesis is true is made if the sample data provide sufficient evidence to show that the null hypothesis can be rejected. that the new fuel injection system is better than the current system. Production of automobiles with the new fuel injection system on the basis of better gas mileage cannot be justified. Perhaps more research and further testing can be conducted.

Successful companies stay competitive by developing new products, new methods, new systems, and the like, that are better than what is currently available. Before adopting something new, it is desirable to conduct research to determine if there is statistical support for the conclusion that the new approach is indeed better. In such cases, the research hypothesis is stated as the alternative hypothesis. For example, a new teaching method is developed that is believed to be better than the current method. The alternative hypothesis is that the new method is better. The null hypothesis is that the new method is no better than the old method. A new sales force bonus plan is developed in an attempt to increase sales. The alternative hypothesis is that the new bonus plan increases sales. The null hypothesis is that the new bonus plan does not increase sales. A new drug is developed with the goal of lowering blood pressure more than an existing drug. The alternative hypothesis is that the new drug lowers blood pressure more than the existing drug. The null hypothesis is that the new drug does not provide lower blood pressure than the existing drug. In each case, rejection of the null hypothesis  $H_0$  provides statistical support for the research hypothesis. We will see many examples of hypothesis tests in research situations such as these throughout this chapter and in the remainder of the text.

### The Null Hypothesis as an Assumption to Be Challenged

Of course, not all hypothesis tests involve research hypotheses. In the following discussion we consider applications of hypothesis testing where we begin with a belief or an assumption that a statement about the value of a population parameter is true. We will then use a hypothesis test to challenge the assumption and determine if there is statistical evidence to conclude that the assumption is incorrect. In these situations, it is helpful to develop the null hypothesis first. The null hypothesis  $H_0$  expresses the belief or assumption about the value of the population parameter. The alternative hypothesis  $H_a$  is that the belief or assumption is incorrect.

As an example, consider the situation of a manufacturer of soft drink products. The label on a soft drink bottle states that it contains 67.6 fluid ounces. We consider the label correct provided the population mean filling weight for the bottles is *at least* 67.6 fluid ounces. Without any reason to believe otherwise, we would give the manufacturer the benefit of the doubt and assume that the statement provided on the label is correct. Thus, in a hypothesis test about the population mean fluid weight per bottle, we would begin with the assumption that the label is correct and state the null hypothesis as  $\mu \ge 67.6$ . The challenge to this assumption would imply that the label is incorrect and the bottles are being underfilled. This challenge would be stated as the alternative hypothesis  $\mu < 67.6$ . Thus, the null and alternative hypotheses are:

$$H_0: \mu \ge 67.6$$
  
 $H_a: \mu < 67.6$ 

A manufacturer's product information is usually assumed to be true and stated as the null hypothesis. The conclusion that the information is incorrect can be made if the null hypothesis is rejected. A government agency with the responsibility for validating manufacturing labels could select a sample of soft drinks bottles, compute the sample mean filling weight, and use the sample results to test the preceding hypotheses. If the sample results lead to the conclusion to reject  $H_0$ , the inference that  $H_a$ :  $\mu < 67.6$  is true can be made. With this statistical support, the agency is justified in concluding that the label is incorrect and underfilling of the bottles is occurring. Appropriate action to force the manufacturer to comply with labeling standards would be considered. However, if the sample results indicate  $H_0$  cannot be rejected, the assumption that the manufacturer's labeling is correct cannot be rejected. With this conclusion, no action would be taken.

Let us now consider a variation of the soft drink bottle filling example by viewing the same situation from the manufacturer's point of view. The bottle-filling operation has been designed to fill soft drink bottles with 67.6 fluid ounces as stated on the label. The company does not want to underfill the containers because that could result in an underfilling complaint from customers or, perhaps, a government agency. However, the company does not want to overfill containers either because putting more soft drink than necessary into the containers would be an unnecessary cost. The company's goal would be to adjust the bottle-filling operation so that the population mean filling weight per bottle is 67.6 fluid ounces as specified on the label.

Although this is the company's goal, from time to time any production process can get out of adjustment. If this occurs in our example, underfilling or overfilling of the soft drink bottles will occur. In either case, the company would like to know about it in order to correct the situation by readjusting the bottle-filling operation to the designed 67.6 fluid ounces. In a hypothesis testing application, we would again begin with the assumption that the production process is operating correctly and state the null hypothesis as  $\mu = 67.6$  fluid ounces. The alternative hypothesis that challenges this assumption is that  $\mu \neq 67.6$ , which indicates either overfilling or underfilling is occurring. The null and alternative hypotheses for the manufacturer's hypothesis test are:

$$H_0: \mu = 67.6$$
  
 $H_a: \mu \neq 67.6$ 

Suppose that the soft drink manufacturer uses a quality control procedure to periodically select a sample of bottles from the filling operation and computes the sample mean filling weight per bottle. If the sample results lead to the conclusion to reject  $H_0$ , the inference is made that  $H_a$ :  $\mu \neq 67.6$  is true. We conclude that the bottles are not being filled properly and the production process should be adjusted to restore the population mean to 67.6 fluid ounces per bottle. However, if the sample results indicate  $H_0$  cannot be rejected, the assumption that the manufacturer's bottle filling operation is functioning properly cannot be rejected. In this case, no further action would be taken and the production operation would continue to run.

The two preceding forms of the soft drink manufacturing hypothesis test show that the null and alternative hypotheses may vary depending upon the point of view of the researcher or decision maker. To correctly formulate hypotheses it is important to understand the context of the situation and structure the hypotheses to provide the information the researcher or decision maker wants.

# **Summary of Forms for Null and Alternative Hypotheses**

The hypothesis tests in this chapter involve two population parameters: the population mean and the population proportion. Depending on the situation, hypothesis tests about a population parameter may take one of three forms: two use inequalities in the null hypothesis; the third uses an equality in the null hypothesis. For hypothesis tests involving a population mean, we let  $\mu_0$  denote the hypothesized value and we must choose one of the following three forms for the hypothesis tests.

The three possible forms of hypotheses  $H_0$  and  $H_a$  are shown here. Note that the equality always appears in the null hypothesis  $H_{0r}$ 

$$\begin{array}{ll} H_0: \mu \ge \mu_0 & H_0: \mu \le \mu_0 & H_0: \mu = \mu_0 \\ H_a: \mu < \mu_0 & H_a: \mu > \mu_0 & H_a: \mu \ne \mu_0 \end{array}$$

For reasons that will be clear later, the first two forms are called one-tailed tests. The third form is called a two-tailed test.

In many situations, the choice of  $H_0$  and  $H_a$  is not obvious and judgment is necessary to select the proper form. However, as the preceding forms show, the equality part of the

expression (either  $\geq$ ,  $\leq$ , or =) *always* appears in the null hypothesis. In selecting the proper form of  $H_0$  and  $H_a$ , keep in mind that the alternative hypothesis is often what the test is attempting to establish. Hence, asking whether the user is looking for evidence to support  $\mu < \mu_0$ ,  $\mu > \mu_0$ , or  $\mu \neq \mu_0$  will help determine  $H_a$ . The following exercises are designed to provide practice in choosing the proper form for a hypothesis test involving a population mean.

#### Exercises

- 1. The manager of the Danvers-Hilton Resort Hotel stated that the mean guest bill for a weekend is \$600 or less. A member of the hotel's accounting staff noticed that the total charges for guest bills have been increasing in recent months. The accountant will use a sample of weekend guest bills to test the manager's claim.
  - a. Which form of the hypotheses should be used to test the manager's claim? Explain.

$$\begin{array}{ll} H_0: \mu \geq 600 & H_0: \mu \leq 600 & H_0: \mu = 600 \\ H_a: \mu < 600 & H_a: \mu > 600 & H_a: \mu \neq 600 \end{array}$$

- b. What conclusion is appropriate when  $H_0$  cannot be rejected?
- c. What conclusion is appropriate when  $H_0$  can be rejected?
- 2. The manager of an automobile dealership is considering a new bonus plan designed to increase sales volume. Currently, the mean sales volume is 14 automobiles per month. The manager wants to conduct a research study to see whether the new bonus plan increases sales volume. To collect data on the plan, a sample of sales personnel will be allowed to sell under the new bonus plan for a one-month period.
  - a. Develop the null and alternative hypotheses most appropriate for this situation.
  - b. Comment on the conclusion when  $H_0$  cannot be rejected.
  - c. Comment on the conclusion when  $H_0$  can be rejected.
- 3. A production line operation is designed to fill cartons with laundry detergent to a mean weight of 32 ounces. A sample of cartons is periodically selected and weighed to determine whether underfilling or overfilling is occurring. If the sample data lead to a conclusion of underfilling or overfilling, the production line will be shut down and adjusted to obtain proper filling.
  - a. Formulate the null and alternative hypotheses that will help in deciding whether to shut down and adjust the production line.
  - b. Comment on the conclusion and the decision when  $H_0$  cannot be rejected.
  - c. Comment on the conclusion and the decision when  $H_0$  can be rejected.
- 4. Because of high production-changeover time and costs, a director of manufacturing must convince management that a proposed manufacturing method reduces costs before the new method can be implemented. The current production method operates with a mean cost of \$220 per hour. A research study will measure the cost of the new method over a sample production period.
  - a. Develop the null and alternative hypotheses most appropriate for this study.
  - b. Comment on the conclusion when  $H_0$  cannot be rejected.
  - c. Comment on the conclusion when  $H_0$  can be rejected.

# (9.2)

# Type I and Type II Errors

The null and alternative hypotheses are competing statements about the population. Either the null hypothesis  $H_0$  is true or the alternative hypothesis  $H_a$  is true, but not both. Ideally the hypothesis testing procedure should lead to the acceptance of  $H_0$  when  $H_0$  is true and the

self test

|            |                              | Population            | Condition             |
|------------|------------------------------|-----------------------|-----------------------|
|            |                              | H <sub>0</sub> True   | H <sub>a</sub> True   |
| Conclusion | Accept H <sub>0</sub>        | Correct<br>Conclusion | Type II<br>Error      |
| Conclusion | <b>Reject</b> H <sub>0</sub> | Type I<br>Error       | Correct<br>Conclusion |

 TABLE 9.1
 ERRORS AND CORRECT CONCLUSIONS IN HYPOTHESIS TESTING

rejection of  $H_0$  when  $H_a$  is true. Unfortunately, the correct conclusions are not always possible. Because hypothesis tests are based on sample information, we must allow for the possibility of errors. Table 9.1 illustrates the two kinds of errors that can be made in hypothesis testing.

The first row of Table 9.1 shows what can happen if the conclusion is to accept  $H_0$ . If  $H_0$  is true, this conclusion is correct. However, if  $H_a$  is true, we make a **Type II error**; that is, we accept  $H_0$  when it is false. The second row of Table 9.1 shows what can happen if the conclusion is to reject  $H_0$ . If  $H_0$  is true, we make a **Type I error**; that is, we reject  $H_0$  when it is true, rejecting  $H_0$  is correct.

Recall the hypothesis testing illustration discussed in Section 9.1 in which an automobile product research group developed a new fuel injection system designed to increase the miles-per-gallon rating of a particular automobile. With the current model obtaining an average of 24 miles per gallon, the hypothesis test was formulated as follows.

$$H_0: \mu \le 24$$
  
 $H_a: \mu > 24$ 

The alternative hypothesis,  $H_a: \mu > 24$ , indicates that the researchers are looking for sample evidence to support the conclusion that the population mean miles per gallon with the new fuel injection system is greater than 24.

In this application, the Type I error of rejecting  $H_0$  when it is true corresponds to the researchers claiming that the new system improves the miles-per-gallon rating ( $\mu > 24$ ) when in fact the new system is not any better than the current system. In contrast, the Type II error of accepting  $H_0$  when it is false corresponds to the researchers concluding that the new system is not any better than the current system ( $\mu \le 24$ ) when in fact the new system is not any better than the current system ( $\mu \le 24$ ) when in fact the new system is not any better than the current system ( $\mu \le 24$ ) when in fact the new system improves miles-per-gallon performance.

For the miles-per-gallon rating hypothesis test, the null hypothesis is  $H_0: \mu \le 24$ . Suppose the null hypothesis is true as an equality; that is,  $\mu = 24$ . The probability of making a Type I error when the null hypothesis is true as an equality is called the **level of significance**. Thus, for the miles-per-gallon rating hypothesis test, the level of significance is the probability of rejecting  $H_0: \mu \le 24$  when  $\mu = 24$ . Because of the importance of this concept, we now restate the definition of level of significance.

#### LEVEL OF SIGNIFICANCE

The level of significance is the probability of making a Type I error when the null hypothesis is true as an equality.

The Greek symbol  $\alpha$  (alpha) is used to denote the level of significance, and common choices for  $\alpha$  are .05 and .01.

In practice, the person responsible for the hypothesis test specifies the level of significance. By selecting  $\alpha$ , that person is controlling the probability of making a Type I error. If the cost of making a Type I error is high, small values of  $\alpha$  are preferred. If the cost of making a Type I error is not too high, larger values of  $\alpha$  are typically used. Applications of hypothesis testing that only control for the Type I error are called *significance tests*. Many applications of hypothesis testing are of this type.

Although most applications of hypothesis testing control for the probability of making a Type I error, they do not always control for the probability of making a Type II error. Hence, if we decide to accept  $H_0$ , we cannot determine how confident we can be with that decision. Because of the uncertainty associated with making a Type II error when conducting significance tests, statisticians usually recommend that we use the statement "do not reject  $H_0$ " instead of "accept  $H_0$ ." Using the statement "do not reject  $H_0$ " carries the recommendation to withhold both judgment and action. In effect, by not directly accepting  $H_0$ , the statistician avoids the risk of making a Type II error. Whenever the probability of making a Type II error has not been determined and controlled, we will not make the statement "accept  $H_0$ ." In such cases, only two conclusions are possible: *do not reject*  $H_0$  or *reject*  $H_0$ .

Although controlling for a Type II error in hypothesis testing is not common, it can be done. In Sections 9.7 and 9.8 we will illustrate procedures for determining and controlling the probability of making a Type II error. If proper controls have been established for this error, action based on the "accept  $H_0$ " conclusion can be appropriate.

#### NOTES AND COMMENTS

Walter Williams, syndicated columnist and professor of economics at George Mason University, points out that the possibility of making a Type I or a Type II error is always present in decision making (*The Cincinnati Enquirer*, August 14, 2005). He notes that the Food and Drug Administration runs the risk of making these errors in their drug approval process. With a Type I error, the FDA fails to approve a drug that is safe and effective. A Type II error means the FDA approves a drug that has unanticipated dangerous side effects. Regardless of the decision made, the possibility of making a costly error cannot be eliminated.

#### Exercises



5. Nielsen reported that young men in the United States watch 56.2 minutes of prime-time TV daily (*The Wall Street Journal Europe*, November 18, 2003). A researcher believes that young men in Germany spend more time watching prime-time TV. A sample of German young men will be selected by the researcher and the time they spend watching TV in one day will be recorded. The sample results will be used to test the following null and alternative hypotheses.

$$H_0: \mu \le 56.2$$
  
 $H_a: \mu > 56.2$ 

- a. What is the Type I error in this situation? What are the consequences of making this error?
- b. What is the Type II error in this situation? What are the consequences of making this error?
- 6. The label on a 3-quart container of orange juice states that the orange juice contains an average of 1 gram of fat or less. Answer the following questions for a hypothesis test that could be used to test the claim on the label.
  - a. Develop the appropriate null and alternative hypotheses.

If the sample data are consistent with the null hypothesis  $H_0$ , we will follow the practice of concluding "do not reject  $H_0$ ." This conclusion is preferred over "accept  $H_0$ ," because the conclusion to accept  $H_0$  puts us at risk of making a Type II error.

- b. What is the Type I error in this situation? What are the consequences of making this error?
- c. What is the Type II error in this situation? What are the consequences of making this error?
- 7. Carpetland salespersons average \$8000 per week in sales. Steve Contois, the firm's vice president, proposes a compensation plan with new selling incentives. Steve hopes that the results of a trial selling period will enable him to conclude that the compensation plan increases the average sales per salesperson.
  - a. Develop the appropriate null and alternative hypotheses.
  - b. What is the Type I error in this situation? What are the consequences of making this error?
  - c. What is the Type II error in this situation? What are the consequences of making this error?
- 8. Suppose a new production method will be implemented if a hypothesis test supports the conclusion that the new method reduces the mean operating cost per hour.
  - a. State the appropriate null and alternative hypotheses if the mean cost for the current production method is \$220 per hour.
  - b. What is the Type I error in this situation? What are the consequences of making this error?
  - c. What is the Type II error in this situation? What are the consequences of making this error?

# 9.3

# Population Mean: $\sigma$ Known

In Chapter 8 we said that the  $\sigma$  known case corresponds to applications in which historical data and/or other information are available that enable us to obtain a good estimate of the population standard deviation prior to sampling. In such cases the population standard deviation can, for all practical purposes, be considered known. In this section we show how to conduct a hypothesis test about a population mean for the  $\sigma$  known case.

The methods presented in this section are exact if the sample is selected from a population that is normally distributed. In cases where it is not reasonable to assume the population is normally distributed, these methods are still applicable if the sample size is large enough. We provide some practical advice concerning the population distribution and the sample size at the end of this section.

### **One-Tailed Test**

**One-tailed tests** about a population mean take one of the following two forms.

| Lower Tail Test        | Upper Tail Test        |
|------------------------|------------------------|
| $H_0: \mu \ge \mu_0$   | $H_0: \mu \leq \mu_0$  |
| $H_{a}: \mu < \mu_{0}$ | $H_{a}: \mu > \mu_{0}$ |

Let us consider an example involving a lower tail test.

The Federal Trade Commission (FTC) periodically conducts statistical studies designed to test the claims that manufacturers make about their products. For example, the label on a large can of Hilltop Coffee states that the can contains 3 pounds of coffee. The FTC knows that Hilltop's production process cannot place exactly 3 pounds of coffee in each can, even if the mean filling weight for the population of all cans filled is 3 pounds per can. However, as long as the population mean filling weight is at least 3 pounds per can, the rights of consumers will be protected. Thus, the FTC interprets the label information on a large can of coffee as a claim by Hilltop that the population mean filling weight is at least 3 pounds per can. We will show how the FTC can check Hilltop's claim by conducting a lower tail hypothesis test.

The first step is to develop the null and alternative hypotheses for the test. If the population mean filling weight is at least 3 pounds per can, Hilltop's claim is correct. This establishes the null hypothesis for the test. However, if the population mean weight is less than 3 pounds per can, Hilltop's claim is incorrect. This establishes the alternative hypothesis. With  $\mu$  denoting the population mean filling weight, the null and alternative hypotheses are as follows:

$$H_0: \mu \ge 3$$
  
 $H_a: \mu < 3$ 

Note that the hypothesized value of the population mean is  $\mu_0 = 3$ .

If the sample data indicate that  $H_0$  cannot be rejected, the statistical evidence does not support the conclusion that a label violation has occurred. Hence, no action should be taken against Hilltop. However, if the sample data indicate  $H_0$  can be rejected, we will conclude that the alternative hypothesis,  $H_a$ :  $\mu < 3$ , is true. In this case a conclusion of underfilling and a charge of a label violation against Hilltop would be justified.

Suppose a sample of 36 cans of coffee is selected and the sample mean  $\bar{x}$  is computed as an estimate of the population mean  $\mu$ . If the value of the sample mean  $\bar{x}$  is less than 3 pounds, the sample results will cast doubt on the null hypothesis. What we want to know is how much less than 3 pounds must  $\bar{x}$  be before we would be willing to declare the difference significant and risk making a Type I error by falsely accusing Hilltop of a label violation. A key factor in addressing this issue is the value the decision maker selects for the level of significance.

As noted in the preceding section, the level of significance, denoted by  $\alpha$ , is the probability of making a Type I error by rejecting  $H_0$  when the null hypothesis is true as an equality. The decision maker must specify the level of significance. If the cost of making a Type I error is high, a small value should be chosen for the level of significance. If the cost is not high, a larger value is more appropriate. In the Hilltop Coffee study, the director of the FTC's testing program made the following statement: "If the company is meeting its weight specifications at  $\mu = 3$ , I do not want to take action against them. But, I am willing to risk a 1% chance of making such an error." From the director's statement, we set the level of significance for the hypothesis test at  $\alpha = .01$ . Thus, we must design the hypothesis test so that the probability of making a Type I error when  $\mu = 3$  is .01.

For the Hilltop Coffee study, by developing the null and alternative hypotheses and specifying the level of significance for the test, we carry out the first two steps required in conducting every hypothesis test. We are now ready to perform the third step of hypothesis testing: collect the sample data and compute the value of what is called a test statistic.

**Test statistic** For the Hilltop Coffee study, previous FTC tests show that the population standard deviation can be assumed known with a value of  $\sigma = .18$ . In addition, these tests also show that the population of filling weights can be assumed to have a normal distribution. From the study of sampling distributions in Chapter 7 we know that if the population from which we are sampling is normally distributed, the sampling distribution of  $\bar{x}$  will also be normally distributed. Thus, for the Hilltop Coffee study, the sampling distribution of  $\bar{x}$  is normally distributed. With a known value of  $\sigma = .18$  and a sample size of n = 36, Figure 9.1 shows the sampling distribution of  $\bar{x}$  when the null hypothesis is true as an equality; that is, when  $\mu = \mu_0 = 3$ .<sup>1</sup> Note that the standard error of  $\bar{x}$  is given by  $\sigma_{\bar{x}} = \sigma/\sqrt{n} = .18/\sqrt{36} = .03$ .

Because the sampling distribution of  $\bar{x}$  is normally distributed, the sampling distribution of

$$z = \frac{\bar{x} - \mu_0}{\sigma_{\bar{x}}} = \frac{\bar{x} - 3}{.03}$$

The standard error of  $\bar{x}$  is the standard deviation of the sampling distribution of  $\bar{x}$ .

<sup>&</sup>lt;sup>1</sup>In constructing sampling distributions for hypothesis tests, it is assumed that  $H_0$  is satisfied as an equality.





is a standard normal distribution. A value of z = -1 means that the value of  $\bar{x}$  is one standard error below the hypothesized value of the mean, a value of z = -2 means that the value of  $\bar{x}$  is two standard errors below the hypothesized value of the mean, and so on. We can use the standard normal probability table to find the lower tail probability corresponding to any z value. For instance, the lower tail area at z = -3.00 is .0013. Hence, the probability of obtaining a value of z that is three or more standard errors below the mean is .0013. As a result, the probability of obtaining a value of  $\bar{x}$  that is 3 or more standard errors below the hypothesized population mean  $\mu_0 = 3$  is also .0013. Such a result is unlikely if the null hypothesis is true.

For hypothesis tests about a population mean in the  $\sigma$  known case, we use the standard normal random variable z as a **test statistic** to determine whether  $\bar{x}$  deviates from the hypothesized value of  $\mu$  enough to justify rejecting the null hypothesis. With  $\sigma_{\bar{x}} = \sigma/\sqrt{n}$ , the test statistic is as follows.

# TEST STATISTIC FOR HYPOTHESIS TESTS ABOUT A POPULATION MEAN: $\sigma$ KNOWN

$$z = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}} \tag{9.1}$$

The key question for a lower tail test is, How small must the test statistic z be before we choose to reject the null hypothesis? Two approaches can be used to answer this question: the p-value approach and the critical value approach.

*p***-value approach** The *p*-value approach uses the value of the test statistic *z* to compute a probability called a *p*-value.

#### *p*-VALUE

A *p*-value is a probability that provides a measure of the evidence against the null hypothesis provided by the sample. Smaller *p*-values indicate more evidence against  $H_0$ .

The *p*-value is used to determine whether the null hypothesis should be rejected.

A small p-value indicates the value of the test statistic is unusual given the assumption that  $H_0$  is true. Let us see how the *p*-value is computed and used. The value of the test statistic is used to compute the *p*-value. The method used depends on whether the test is a lower tail, an upper tail, or a two-tailed test. For a lower tail test, the *p*-value is the probability of obtaining a value for the test statistic as small as or smaller than that provided by the sample. Thus, to compute the *p*-value for the lower tail test in the  $\sigma$  known case, we must find the area under the standard normal curve for values of  $z \leq$  the value of the test statistic. After computing the *p*-value, we must then decide whether it is small enough to reject the null hypothesis; as we will show, this decision involves comparing the *p*-value to the level of significance.



Let us now compute the *p*-value for the Hilltop Coffee lower tail test. Suppose the sample of 36 Hilltop coffee cans provides a sample mean of  $\bar{x} = 2.92$  pounds. Is  $\bar{x} = 2.92$  small enough to cause us to reject  $H_0$ ? Because this is a lower tail test, the *p*-value is the area under the standard normal curve for values of  $z \le$  the value of the test statistic. Using  $\bar{x} = 2.92$ ,  $\sigma = .18$ , and n = 36, we compute the value of the test statistic *z*.

$$z = \frac{\bar{x} - \mu_0}{\sigma/\sqrt{n}} = \frac{2.92 - 3}{.18/\sqrt{36}} = -2.67$$

Thus, the *p*-value is the probability that the test statistic *z* is less than or equal to -2.67 (the area under the standard normal curve to the left of the test statistic).

Using the standard normal probability table, we find that the lower tail area at z = -2.67 is .0038. Figure 9.2 shows that  $\bar{x} = 2.92$  corresponds to z = -2.67 and a *p*-value = .0038. This *p*-value indicates a small probability of obtaining a sample mean of  $\bar{x} = 2.92$  (and a test statistic of -2.67) or smaller when sampling from a population with  $\mu = 3$ . This

#### **FIGURE 9.2** *p*-VALUE FOR THE HILLTOP COFFEE STUDY WHEN $\bar{x} = 2.92$ AND z = -2.67



*p*-value does not provide much support for the null hypothesis, but is it small enough to cause us to reject  $H_0$ ? The answer depends upon the level of significance for the test.

As noted previously, the director of the FTC's testing program selected a value of .01 for the level of significance. The selection of  $\alpha = .01$  means that the director is willing to tolerate a probability of .01 of rejecting the null hypothesis when it is true as an equality ( $\mu_0 = 3$ ). The sample of 36 coffee cans in the Hilltop Coffee study resulted in a *p*-value = .0038, which means that the probability of obtaining a value of  $\bar{x} = 2.92$  or less when the null hypothesis is true as an equality is .0038. Because .0038 is less than or equal to  $\alpha = .01$ , we reject  $H_0$ . Therefore, we find sufficient statistical evidence to reject the null hypothesis at the .01 level of significance.

We can now state the general rule for determining whether the null hypothesis can be rejected when using the *p*-value approach. For a level of significance  $\alpha$ , the rejection rule using the *p*-value approach is as follows:

**REJECTION RULE USING** *p***-VALUE** 

Reject  $H_0$  if p-value  $\leq \alpha$ 

In the Hilltop Coffee test, the *p*-value of .0038 resulted in the rejection of the null hypothesis. Although the basis for making the rejection decision involves a comparison of the *p*-value to the level of significance specified by the FTC director, the observed *p*-value of .0038 means that we would reject  $H_0$  for any value of  $\alpha \ge .0038$ . For this reason, the *p*-value is also called the *observed level of significance*.

Different decision makers may express different opinions concerning the cost of making a Type I error and may choose a different level of significance. By providing the *p*-value as part of the hypothesis testing results, another decision maker can compare the reported *p*-value to his or her own level of significance and possibly make a different decision with respect to rejecting  $H_0$ .

**Critical value approach** The critical value approach requires that we first determine a value for the test statistic called the **critical value**. For a lower tail test, the critical value serves as a benchmark for determining whether the value of the test statistic is small enough to reject the null hypothesis. It is the value of the test statistic that corresponds to an area of  $\alpha$  (the level of significance) in the lower tail of the sampling distribution of the test statistic. In other words, the critical value is the largest value of the test statistic that will result in the rejection of the null hypothesis. Let us return to the Hilltop Coffee example and see how this approach works.

In the  $\sigma$  known case, the sampling distribution for the test statistic z is a standard normal distribution. Therefore, the critical value is the value of the test statistic that corresponds to an area of  $\alpha = .01$  in the lower tail of a standard normal distribution. Using the standard normal probability table, we find that z = -2.33 provides an area of .01 in the lower tail (see Figure 9.3). Thus, if the sample results in a value of the test statistic that is less than or equal to -2.33, the corresponding *p*-value will be less than or equal to .01; in this case, we should reject the null hypothesis. Hence, for the Hilltop Coffee study the critical value rejection rule for a level of significance of .01 is

Reject 
$$H_0$$
 if  $z \le -2.33$ 

In the Hilltop Coffee example,  $\bar{x} = 2.92$  and the test statistic is z = -2.67. Because z = -2.67 < -2.33, we can reject  $H_0$  and conclude that Hilltop Coffee is underfilling cans.



**FIGURE 9.3** CRITICAL VALUE = -2.33 FOR THE HILLTOP COFFEE HYPOTHESIS TEST

We can generalize the rejection rule for the critical value approach to handle any level of significance. The rejection rule for a lower tail test follows.

# REJECTION RULE FOR A LOWER TAIL TEST: CRITICAL VALUE APPROACH Reject $H_0$ if $z \le -z_\alpha$

where  $-z_{\alpha}$  is the critical value; that is, the *z* value that provides an area of  $\alpha$  in the lower tail of the standard normal distribution.

The *p*-value approach to hypothesis testing and the critical value approach will always lead to the same rejection decision; that is, whenever the *p*-value is less than or equal to  $\alpha$ , the value of the test statistic will be less than or equal to the critical value. The advantage of the *p*-value approach is that the *p*-value tells us *how* significant the results are (the observed level of significance). If we use the critical value approach, we only know that the results are significant at the stated level of significance.

At the beginning of this section, we said that one-tailed tests about a population mean take one of the following two forms:

| Lower Tail Test        | Upper Tail Test        |
|------------------------|------------------------|
| $H_0: \mu \ge \mu_0$   | $H_0: \mu \leq \mu_0$  |
| $H_{a}: \mu < \mu_{0}$ | $H_{a}: \mu > \mu_{0}$ |

We used the Hilltop Coffee study to illustrate how to conduct a lower tail test. We can use the same general approach to conduct an upper tail test. The test statistic z is still computed using equation (9.1). But, for an upper tail test, the *p*-value is the probability of obtaining a value for the test statistic as large as or larger than that provided by the sample. Thus, to compute the *p*-value for the upper tail test in the  $\sigma$  known case, we must find the area under the standard normal curve to the right of the test statistic. Using the critical value approach causes us to reject the null hypothesis if the value of the test statistic is greater than or equal to the critical value  $z_{\alpha}$ ; in other words, we reject  $H_0$  if  $z \ge z_{\alpha}$ .

### **Two-Tailed Test**

In hypothesis testing, the general form for a **two-tailed test** about a population mean is as follows:

$$H_0: \mu = \mu_0$$
$$H_a: \mu \neq \mu_0$$

In this subsection we show how to conduct a two-tailed test about a population mean for the  $\sigma$  known case. As an illustration, we consider the hypothesis testing situation facing MaxFlight, Inc.

The U.S. Golf Association (USGA) establishes rules that manufacturers of golf equipment must meet if their products are to be acceptable for use in USGA events. MaxFlight uses a high-technology manufacturing process to produce golf balls with a mean driving distance of 295 yards. Sometimes, however, the process gets out of adjustment and produces golf balls with a mean driving distance different from 295 yards. When the mean distance falls below 295 yards, the company worries about losing sales because the golf balls do not provide as much distance as advertised. When the mean distance passes 295 yards, MaxFlight's golf balls may be rejected by the USGA for exceeding the overall distance standard concerning carry and roll.

MaxFlight's quality control program involves taking periodic samples of 50 golf balls to monitor the manufacturing process. For each sample, a hypothesis test is conducted to determine whether the process has fallen out of adjustment. Let us develop the null and alternative hypotheses. We begin by assuming that the process is functioning correctly; that is, the golf balls being produced have a mean distance of 295 yards. This assumption establishes the null hypothesis. The alternative hypothesis is that the mean distance is not equal to 295 yards. With a hypothesized value of  $\mu_0 = 295$ , the null and alternative hypotheses for the MaxFlight hypothesis test are as follows:

$$H_0: \mu = 295$$
  
 $H_a: \mu \neq 295$ 

If the sample mean  $\bar{x}$  is significantly less than 295 yards or significantly greater than 295 yards, we will reject  $H_0$ . In this case, corrective action will be taken to adjust the manufacturing process. On the other hand, if  $\bar{x}$  does not deviate from the hypothesized mean  $\mu_0 = 295$  by a significant amount,  $H_0$  will not be rejected and no action will be taken to adjust the manufacturing process.

The quality control team selected  $\alpha = .05$  as the level of significance for the test. Data from previous tests conducted when the process was known to be in adjustment show that the population standard deviation can be assumed known with a value of  $\sigma = 12$ . Thus, with a sample size of n = 50, the standard error of  $\bar{x}$  is

$$\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}} = \frac{12}{\sqrt{50}} = 1.7$$

Because the sample size is large, the central limit theorem (see Chapter 7) allows us to conclude that the sampling distribution of  $\bar{x}$  can be approximated by a normal distribution. Figure 9.4 shows the sampling distribution of  $\bar{x}$  for the MaxFlight hypothesis test with a hypothesized population mean of  $\mu_0 = 295$ .

Suppose that a sample of 50 golf balls is selected and that the sample mean is  $\bar{x} =$  297.6 yards. This sample mean provides support for the conclusion that the population mean is larger than 295 yards. Is this value of  $\bar{x}$  enough larger than 295 to cause us to reject  $H_0$  at the .05 level of significance? In the previous section we described two approaches that can be used to answer this question: the *p*-value approach and the critical value approach.







**p-value approach** Recall that the *p*-value is a probability used to determine whether the null hypothesis should be rejected. For a two-tailed test, values of the test statistic in *either* tail provide evidence against the null hypothesis. For a two-tailed test, the *p*-value is the probability of obtaining a value for the test statistic *as unlikely as or more unlikely than* that provided by the sample. Let us see how the *p*-value is computed for the MaxFlight hypothesis test.

First we compute the value of the test statistic. For the  $\sigma$  known case, the test statistic z is a standard normal random variable. Using equation (9.1) with  $\bar{x} = 297.6$ , the value of the test statistic is

$$z = \frac{\bar{x} - \mu_0}{\sigma/\sqrt{n}} = \frac{297.6 - 295}{12/\sqrt{50}} = 1.53$$

Now to compute the *p*-value we must find the probability of obtaining a value for the test statistic *at least as unlikely as* z = 1.53. Clearly values of  $z \ge 1.53$  are *at least as unlikely*. But, because this is a two-tailed test, values of  $z \le -1.53$  are also *at least as unlikely as* the value of the test statistic provided by the sample. In Figure 9.5, we see that the two-tailed *p*-value in this case is given by  $P(z \le -1.53) + P(z \ge 1.53)$ . Because the

#### FIGURE 9.5 *p*-VALUE FOR THE MAXFLIGHT HYPOTHESIS TEST



normal curve is symmetric, we can compute this probability by finding the area under the standard normal curve to the right of z = 1.53 and doubling it. The table for the standard normal distribution shows that the area to the left of z = 1.53 is .9370. Thus, the area under the standard normal curve to the right of the test statistic z = 1.53 is 1.0000 - .9370 = .0630. Doubling this, we find the *p*-value for the MaxFlight two-tailed hypothesis test is p-value = 2(.0630) = .1260.

Next we compare the *p*-value to the level of significance to see whether the null hypothesis should be rejected. With a level of significance of  $\alpha = .05$ , we do not reject  $H_0$  because the *p*-value = .1260 > .05. Because the null hypothesis is not rejected, no action will be taken to adjust the MaxFlight manufacturing process.

The computation of the *p*-value for a two-tailed test may seem a bit confusing as compared to the computation of the *p*-value for a one-tailed test. But it can be simplified by following three steps.

#### COMPUTATION OF p-VALUE FOR A TWO-TAILED TEST

- 1. Compute the value of the test statistic z.
- 2. If the value of the test statistic is in the upper tail (z > 0), find the area under the standard normal curve to the right of z. If the value of the test statistic is in the lower tail (z < 0), find the area under the standard normal curve to the left of z.
- 3. Double the tail area, or probability, obtained in step 2 to obtain the *p*-value.

**Critical value approach** Before leaving this section, let us see how the test statistic *z* can be compared to a critical value to make the hypothesis testing decision for a two-tailed test. Figure 9.6 shows that the critical values for the test will occur in both the lower and upper tails of the standard normal distribution. With a level of significance of  $\alpha = .05$ , the area in each tail beyond the critical values is  $\alpha/2 = .05/2 = .025$ . Using the standard normal probability table, we find the critical values for the test statistic are  $-z_{.025} = -1.96$  and  $z_{.025} = 1.96$ . Thus, using the critical value approach, the two-tailed rejection rule is

Reject  $H_0$  if  $z \le -1.96$  or if  $z \ge 1.96$ 

Because the value of the test statistic for the MaxFlight study is z = 1.53, the statistical evidence will not permit us to reject the null hypothesis at the .05 level of significance.



#### FIGURE 9.6 CRITICAL VALUES FOR THE MAXFLIGHT HYPOTHESIS TEST

|                                               | Lower Tail Test                                                     | Upper Tail Test                                  | <b>Two-Tailed Test</b>                                                 |
|-----------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------|------------------------------------------------------------------------|
| Hypotheses                                    | $\begin{split} H_0: \mu \geq \mu_0 \\ H_a: \mu < \mu_0 \end{split}$ | $H_0: \mu \le \mu_0$ $H_a: \mu > \mu_0$          | $H_0: \mu = \mu_0$ $H_a: \mu \neq \mu_0$                               |
| Test Statistic                                | $z = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}$                     | $z = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}$  | $z = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}$                        |
| Rejection Rule:<br><i>p</i> -Value Approach   | Reject $H_0$ if<br><i>p</i> -value $\leq \alpha$                    | Reject $H_0$ if<br><i>p</i> -value $\leq \alpha$ | Reject $H_0$ if<br><i>p</i> -value $\leq \alpha$                       |
| Rejection Rule:<br>Critical Value<br>Approach | Reject $H_0$ if $z \le -z_a$                                        | Reject $H_0$ if $z \ge z_a$                      | Reject $H_0$ if<br>$z \le -z_{\alpha/2}$<br>or if $z \ge z_{\alpha/2}$ |

**TABLE 9.2**SUMMARY OF HYPOTHESIS TESTS ABOUT A POPULATION MEAN:<br/> $\sigma$  KNOWN CASE

# **Summary and Practical Advice**

We presented examples of a lower tail test and a two-tailed test about a population mean. Based upon these examples, we can now summarize the hypothesis testing procedures about a population mean for the  $\sigma$  known case as shown in Table 9.2. Note that  $\mu_0$  is the hypothesized value of the population mean.

The hypothesis testing steps followed in the two examples presented in this section are common to every hypothesis test.

#### STEPS OF HYPOTHESIS TESTING

- **Step 1.** Develop the null and alternative hypotheses.
- Step 2. Specify the level of significance.
- Step 3. Collect the sample data and compute the value of the test statistic.

#### p-Value Approach

- **Step 4.** Use the value of the test statistic to compute the *p*-value.
- **Step 5.** Reject  $H_0$  if the *p*-value  $\leq \alpha$ .

#### Critical Value Approach

- **Step 4.** Use the level of significance to determine the critical value and the rejection rule.
- **Step 5.** Use the value of the test statistic and the rejection rule to determine whether to reject  $H_0$ .

Practical advice about the sample size for hypothesis tests is similar to the advice we provided about the sample size for interval estimation in Chapter 8. In most applications, a sample size of  $n \ge 30$  is adequate when using the hypothesis testing procedure described in this section. In cases where the sample size is less than 30, the distribution of the population from which we are sampling becomes an important consideration. If the population is normally distributed, the hypothesis testing procedure that we described is exact and can be used for any sample size. If the population is not normally distributed but is at least roughly symmetric, sample sizes as small as 15 can be expected to provide acceptable results.

### Relationship Between Interval Estimation and Hypothesis Testing

In Chapter 8 we showed how to develop a confidence interval estimate of a population mean. For the  $\sigma$  known case, the  $(1 - \alpha)\%$  confidence interval estimate of a population mean is given by

$$\bar{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

In this chapter, we showed that a two-tailed hypothesis test about a population mean takes the following form:

$$H_0: \mu = \mu_0$$
$$H_a: \mu \neq \mu_0$$

where  $\mu_0$  is the hypothesized value for the population mean.

Suppose that we follow the procedure described in Chapter 8 for constructing a  $100(1 - \alpha)\%$  confidence interval for the population mean. We know that  $100(1 - \alpha)\%$  of the confidence intervals generated will contain the population mean and  $100\alpha\%$  of the confidence intervals generated will not contain the population mean. Thus, if we reject  $H_0$  whenever the confidence interval does not contain  $\mu_0$ , we will be rejecting the null hypothesis when it is true ( $\mu = \mu_0$ ) with probability  $\alpha$ . Recall that the level of significance is the probability of rejecting the null hypothesis when it is true. So constructing a  $100(1 - \alpha)\%$  confidence interval and rejecting  $H_0$  whenever the interval does not contain  $\mu_0$  is equivalent to conducting a two-tailed hypothesis test with  $\alpha$  as the level of significance. The procedure for using a confidence interval to conduct a two-tailed hypothesis test can now be summarized.

# A CONFIDENCE INTERVAL APPROACH TO TESTING A HYPOTHESIS OF THE FORM

$$H_0: \mu = \mu_0$$
$$H_2: \mu \neq \mu_0$$

1. Select a simple random sample from the population and use the value of the sample mean  $\bar{x}$  to develop the confidence interval for the population mean  $\mu$ .

$$\bar{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

2. If the confidence interval contains the hypothesized value  $\mu_0$ , do not reject  $H_0$ . Otherwise, reject<sup>2</sup>  $H_0$ .

Let us illustrate by conducting the MaxFlight hypothesis test using the confidence interval approach. The MaxFlight hypothesis test takes the following form:

$$H_0: \mu = 295$$
  
 $H_a: \mu \neq 295$ 

For a two-tailed hypothesis test, the null hypothesis can be rejected if the confidence interval does not include  $\mu_0$ .

<sup>&</sup>lt;sup>2</sup>To be consistent with the rule for rejecting  $H_0$  when the *p*-value  $\leq a$ , we would also reject  $H_0$  using the confidence interval approach if  $\mu_0$  happens to be equal to one of the end points of the 100(1 - *a*)% confidence interval.

To test these hypotheses with a level of significance of  $\alpha = .05$ , we sampled 50 golf balls and found a sample mean distance of  $\bar{x} = 297.6$  yards. Recall that the population standard deviation is  $\sigma = 12$ . Using these results with  $z_{.025} = 1.96$ , we find that the 95% confidence interval estimate of the population mean is

$$\bar{x} \pm z_{.025} \frac{\sigma}{\sqrt{n}}$$
  
297.6 ± 1.96  $\frac{12}{\sqrt{50}}$   
297.6 ± 3.3

or

This finding enables the quality control manager to conclude with 95% confidence that the mean distance for the population of golf balls is between 294.3 and 300.9 yards. Because the hypothesized value for the population mean,  $\mu_0 = 295$ , is in this interval, the hypothesis testing conclusion is that the null hypothesis,  $H_0: \mu = 295$ , cannot be rejected.

Note that this discussion and example pertain to two-tailed hypothesis tests about a population mean. However, the same confidence interval and two-tailed hypothesis testing relationship exists for other population parameters. The relationship can also be extended to one-tailed tests about population parameters. Doing so, however, requires the development of one-sided confidence intervals, which are rarely used in practice.

#### NOTES AND COMMENTS

We have shown how to use *p*-values. The smaller the *p*-value the greater the evidence against  $H_0$  and the more the evidence in favor of  $H_a$ . Here are some guidelines statisticians suggest for interpreting small *p*-values.

- Less than .01—Overwhelming evidence to conclude *H*<sub>a</sub> is true.
- Between .01 and .05—Strong evidence to conclude  $H_a$  is true.
- Between .05 and .10—Weak evidence to conclude  $H_a$  is true.
- Greater than .10—Insufficient evidence to conclude *H*<sub>a</sub> is true.

#### **Exercises**

*Note to Student:* Some of the exercises that follow ask you to use the *p*-value approach and others ask you to use the critical value approach. Both methods will provide the same hypothesis testing conclusion. We provide exercises with both methods to give you practice using both. In later sections and in following chapters, we will generally emphasize the *p*-value approach as the preferred method, but you may select either based on personal preference.

### **Methods**

9. Consider the following hypothesis test:

$$H_0: \mu \ge 20$$
$$H_a: \mu < 20$$

A sample of 50 provided a sample mean of 19.4. The population standard deviation is 2.

- a. Compute the value of the test statistic.
- b. What is the *p*-value?
- c. Using  $\alpha = .05$ , what is your conclusion?
- d. What is the rejection rule using the critical value? What is your conclusion?
- 10. Consider the following hypothesis test:

$$H_0: \mu \le 25$$
  
 $H_a: \mu > 25$ 

A sample of 40 provided a sample mean of 26.4. The population standard deviation is 6.

- a. Compute the value of the test statistic.
- b. What is the *p*-value?
- c. At  $\alpha = .01$ , what is your conclusion?
- d. What is the rejection rule using the critical value? What is your conclusion?
- 11. Consider the following hypothesis test:

$$H_0: \mu = 15$$
$$H_a: \mu \neq 15$$

A sample of 50 provided a sample mean of 14.15. The population standard deviation is 3.

- a. Compute the value of the test statistic.
- b. What is the *p*-value?
- c. At  $\alpha = .05$ , what is your conclusion?
- d. What is the rejection rule using the critical value? What is your conclusion?
- 12. Consider the following hypothesis test:

$$H_0: \mu \ge 80$$
$$H_a: \mu < 80$$

A sample of 100 is used and the population standard deviation is 12. Compute the *p*-value and state your conclusion for each of the following sample results. Use  $\alpha = .01$ .

- a.  $\bar{x} = 78.5$
- b.  $\bar{x} = 77$
- c.  $\bar{x} = 75.5$
- d.  $\bar{x} = 81$
- 13. Consider the following hypothesis test:

$$H_0: \mu \le 50$$
  
 $H_a: \mu > 50$ 

A sample of 60 is used and the population standard deviation is 8. Use the critical value approach to state your conclusion for each of the following sample results. Use a = .05.

- a.  $\bar{x} = 52.5$ b.  $\bar{x} = 51$ c.  $\bar{x} = 51.8$
- 14. Consider the following hypothesis test:

$$H_0: \mu = 22$$
$$H_a: \mu \neq 22$$



SELF (C

A sample of 75 is used and the population standard deviation is 10. Compute the *p*-value and state your conclusion for each of the following sample results. Use  $\alpha = .01$ .

- a.  $\bar{x} = 23$
- b.  $\bar{x} = 25.1$
- c.  $\bar{x} = 20$

# **Applications**



- 15. Individuals filing federal income tax returns prior to March 31 received an average refund of \$1056. Consider the population of "last-minute" filers who mail their tax return during the last five days of the income tax period (typically April 10 to April 15).
  - a. A researcher suggests that a reason individuals wait until the last five days is that on average these individuals receive lower refunds than do early filers. Develop appropriate hypotheses such that rejection of  $H_0$  will support the researcher's contention.
  - b. For a sample of 400 individuals who filed a tax return between April 10 and 15, the sample mean refund was \$910. Based on prior experience a population standard deviation of  $\sigma =$ \$1600 may be assumed. What is the *p*-value?
  - c. At  $\alpha = .05$ , what is your conclusion?
  - d. Repeat the preceding hypothesis test using the critical value approach.
- 16. In a study entitled How Undergraduate Students Use Credit Cards, it was reported that undergraduate students have a mean credit card balance of \$3173 (*Sallie Mae*, April 2009). This figure was an all-time high and had increased 44% over the previous five years. Assume that a current study is being conducted to determine if it can be concluded that the mean credit card balance for undergraduate students has continued to increase compared to the April 2009 report. Based on previous studies, use a population standard deviation  $\sigma =$  \$1000.
  - a. State the null and alternative hypotheses.
  - b. What is the *p*-value for a sample of 180 undergraduate students with a sample mean credit card balance of \$3325?
  - c. Using a .05 level of significance, what is your conclusion?
- 17. Wall Street securities firms paid out record year-end bonuses of \$125,500 per employee for 2005 (*Fortune*, February 6, 2006). Suppose we would like to take a sample of employees at the Jones & Ryan securities firm to see whether the mean year-end bonus is different from the reported mean of \$125,500 for the population.
  - a. State the null and alternative hypotheses you would use to test whether the year-end bonuses paid by Jones & Ryan were different from the population mean.
  - b. Suppose a sample of 40 Jones & Ryan employees showed a sample mean year-end bonus of \$118,000. Assume a population standard deviation of  $\sigma = $30,000$  and compute the *p*-value.
  - c. With  $\alpha = .05$  as the level of significance, what is your conclusion?
  - d. Repeat the preceding hypothesis test using the critical value approach.
- 18. The average annual total return for U.S. Diversified Equity mutual funds from 1999 to 2003 was 4.1% (*BusinessWeek*, January 26, 2004). A researcher would like to conduct a hypothesis test to see whether the returns for mid-cap growth funds over the same period are significantly different from the average for U.S. Diversified Equity funds.
  - a. Formulate the hypotheses that can be used to determine whether the mean annual return for mid-cap growth funds differ from the mean for U.S. Diversified Equity funds.
  - b. A sample of 40 mid-cap growth funds provides a mean return of  $\bar{x} = 3.4\%$ . Assume the population standard deviation for mid-cap growth funds is known from previous studies to be  $\sigma = 2\%$ . Use the sample results to compute the test statistic and *p*-value for the hypothesis test.
  - c. At  $\alpha = .05$ , what is your conclusion?

- 19. The U.S. Department of Labor reported the average hourly earnings for U.S. production workers to be \$14.32 per hour in 2001 (*The World Almanac*, 2003). A sample of 75 production workers during 2003 showed a sample mean of \$14.68 per hour. Assuming the population standard deviation  $\sigma = $1.45$ , can we conclude that an increase occurred in the mean hourly earnings since 2001? Use  $\alpha = .05$ .
- 20. For the United States, the mean monthly Internet bill is \$32.79 per household (CNBC, January 18, 2006). A sample of 50 households in a southern state showed a sample mean of \$30.63. Use a population standard deviation of  $\sigma =$ \$5.60.
  - a. Formulate hypotheses for a test to determine whether the sample data support the conclusion that the mean monthly Internet bill in the southern state is less than the national mean of \$32.79.
  - b. What is the value of the test statistic?
  - c. What is the *p*-value?
  - d. At  $\alpha = .01$ , what is your conclusion?
- 21. Fowle Marketing Research, Inc., bases charges to a client on the assumption that telephone surveys can be completed in a mean time of 15 minutes or less. If a longer mean survey time is necessary, a premium rate is charged. A sample of 35 surveys provided the survey times shown in the file named Fowle. Based upon past studies, the population standard deviation is assumed known with  $\sigma = 4$  minutes. Is the premium rate justified?
  - a. Formulate the null and alternative hypotheses for this application.
  - b. Compute the value of the test statistic.
  - c. What is the *p*-value?
  - d. At  $\alpha = .01$ , what is your conclusion?
- 22. CCN and ActMedia provided a television channel targeted to individuals waiting in supermarket checkout lines. The channel showed news, short features, and advertisements. The length of the program was based on the assumption that the population mean time a shopper stands in a supermarket checkout line is 8 minutes. A sample of actual waiting times will be used to test this assumption and determine whether actual mean waiting time differs from this standard.
  - a. Formulate the hypotheses for this application.
  - b. A sample of 120 shoppers showed a sample mean waiting time of 8.5 minutes. Assume a population standard deviation of  $\sigma = 3.2$  minutes. What is the *p*-value?
  - c. At  $\alpha = .05$ , what is your conclusion?
  - d. Compute a 95% confidence interval for the population mean. Does it support your conclusion?

9.4

# Population Mean: *o* Unknown

In this section we describe how to conduct hypothesis tests about a population mean for the  $\sigma$  unknown case. Because the  $\sigma$  unknown case corresponds to situations in which an estimate of the population standard deviation cannot be developed prior to sampling, the sample must be used to develop an estimate of both  $\mu$  and  $\sigma$ . Thus, to conduct a hypothesis test about a population mean for the  $\sigma$  unknown case, the sample mean  $\bar{x}$  is used as an estimate of  $\mu$  and the sample standard deviation *s* is used as an estimate of  $\sigma$ .

The steps of the hypothesis testing procedure for the  $\sigma$  unknown case are the same as those for the  $\sigma$  known case described in Section 9.3. But, with  $\sigma$  unknown, the computation of the test statistic and *p*-value is a bit different. Recall that for the  $\sigma$  known case, the sampling distribution of the test statistic has a standard normal distribution. For the  $\sigma$ unknown case, however, the sampling distribution of the test statistic follows the *t* distribution; it has slightly more variability because the sample is used to develop estimates of both  $\mu$  and  $\sigma$ .



In Section 8.2 we showed that an interval estimate of a population mean for the  $\sigma$  unknown case is based on a probability distribution known as the *t* distribution. Hypothesis tests about a population mean for the  $\sigma$  unknown case are also based on the *t* distribution. For the  $\sigma$  unknown case, the test statistic has a *t* distribution with n - 1 degrees of freedom.

TEST STATISTIC FOR HYPOTHESIS TESTS ABOUT A POPULATION MEAN:  $\sigma$  UNKNOWN

t

$$=\frac{\bar{x}-\mu_0}{s/\sqrt{n}}$$
(9.2)

In Chapter 8 we said that the t distribution is based on an assumption that the population from which we are sampling has a normal distribution. However, research shows that this assumption can be relaxed considerably when the sample size is large enough. We provide some practical advice concerning the population distribution and sample size at the end of the section.

### **One-Tailed Test**

web file

Let us consider an example of a one-tailed test about a population mean for the  $\sigma$  unknown case. A business travel magazine wants to classify transatlantic gateway airports according to the mean rating for the population of business travelers. A rating scale with a low score of 0 and a high score of 10 will be used, and airports with a population mean rating greater than 7 will be designated as superior service airports. The magazine staff surveyed a sample of 60 business travelers at each airport to obtain the ratings data. The sample for London's Heathrow Airport provided a sample mean rating of  $\bar{x} = 7.25$  and a sample standard deviation of s = 1.052. Do the data indicate that Heathrow should be designated as a superior service airport?

We want to develop a hypothesis test for which the decision to reject  $H_0$  will lead to the conclusion that the population mean rating for the Heathrow Airport is *greater* than 7. Thus, an upper tail test with  $H_a$ :  $\mu > 7$  is required. The null and alternative hypotheses for this upper tail test are as follows:

$$H_0: \mu \le 7$$
  
 $H_a: \mu > 7$ 

We will use  $\alpha = .05$  as the level of significance for the test.

Using equation (9.2) with  $\bar{x} = 7.25$ ,  $\mu_0 = 7$ , s = 1.052, and n = 60, the value of the test statistic is

$$t = \frac{\bar{x} - \mu_0}{s/\sqrt{n}} = \frac{7.25 - 7}{1.052/\sqrt{60}} = 1.84$$

The sampling distribution of t has n - 1 = 60 - 1 = 59 degrees of freedom. Because the test is an upper tail test, the *p*-value is the area under the curve of the t distribution to the right of t = 1.84.

The *t* distribution table provided in most textbooks will not contain sufficient detail to determine the exact *p*-value, such as the *p*-value corresponding to t = 1.84. For instance,

using Table 2 in Appendix B, the *t* distribution with 59 degrees of freedom provides the following information.

| Area in Upper Tail      | .20  | .10   | .05   | .025     | .01   | .005  |
|-------------------------|------|-------|-------|----------|-------|-------|
| t Value (59 <i>df</i> ) | .848 | 1.296 | 1.671 | 2.001    | 2.391 | 2.662 |
|                         |      |       |       | t = 1.84 | 4     |       |

We see that t = 1.84 is between 1.671 and 2.001. Although the table does not provide the exact *p*-value, the values in the "Area in Upper Tail" row show that the *p*-value must be less than .05 and greater than .025. With a level of significance of  $\alpha = .05$ , this placement is all we need to know to make the decision to reject the null hypothesis and conclude that Heathrow should be classified as a superior service airport.

Because it is cumbersome to use a *t* table to compute *p*-values, and only approximate values are obtained, we show how to compute the exact *p*-value using Excel or Minitab. The directions can be found in Appendix F at the end of this text. Using Excel or Minitab with t = 1.84 provides the upper tail *p*-value of .0354 for the Heathrow Airport hypothesis test. With .0354 < .05, we reject the null hypothesis and conclude that Heathrow should be classified as a superior service airport.

### **Two-Tailed Test**

To illustrate how to conduct a two-tailed test about a population mean for the  $\sigma$  unknown case, let us consider the hypothesis testing situation facing Holiday Toys. The company manufactures and distributes its products through more than 1000 retail outlets. In planning production levels for the coming winter season, Holiday must decide how many units of each product to produce prior to knowing the actual demand at the retail level. For this year's most important new toy, Holiday's marketing director is expecting demand to average 40 units per retail outlet. Prior to making the final production decision based upon this estimate, Holiday decided to survey a sample of 25 retailers in order to develop more information about the demand for the new product. Each retailer was provided with information about the features of the new toy along with the cost and the suggested selling price. Then each retailer was asked to specify an anticipated order quantity.

With  $\mu$  denoting the population mean order quantity per retail outlet, the sample data will be used to conduct the following two-tailed hypothesis test:

$$H_0: \mu = 40$$
$$H_a: \mu \neq 40$$

If  $H_0$  cannot be rejected, Holiday will continue its production planning based on the marketing director's estimate that the population mean order quantity per retail outlet will be  $\mu = 40$  units. However, if  $H_0$  is rejected, Holiday will immediately reevaluate its production plan for the product. A two-tailed hypothesis test is used because Holiday wants to reevaluate the production plan if the population mean quantity per retail outlet is less than anticipated or greater than anticipated. Because no historical data are available (it's a new product), the population mean  $\mu$  and the population standard deviation must both be estimated using  $\bar{x}$  and s from the sample data.



The sample of 25 retailers provided a mean of  $\bar{x} = 37.4$  and a standard deviation of s = 11.79 units. Before going ahead with the use of the *t* distribution, the analyst constructed a histogram of the sample data in order to check on the form of the population distribution. The histogram of the sample data showed no evidence of skewness or any extreme

Appendix F shows how to compute p-values using Excel or Minitab. outliers, so the analyst concluded that the use of the *t* distribution with n - 1 = 24 degrees of freedom was appropriate. Using equation (9.2) with  $\bar{x} = 37.4$ ,  $\mu_0 = 40$ , s = 11.79, and n = 25, the value of the test statistic is

$$t = \frac{\bar{x} - \mu_0}{s/\sqrt{n}} = \frac{37.4 - 40}{11.79/\sqrt{25}} = -1.10$$

Because we have a two-tailed test, the *p*-value is two times the area under the curve of the *t* distribution for  $t \le -1.10$ . Using Table 2 in Appendix B, the *t* distribution table for 24 degrees of freedom provides the following information.

| Area in Upper Tail              | .20  | .10      | .05   | .025  | .01   | .005  |
|---------------------------------|------|----------|-------|-------|-------|-------|
| <i>t</i> -Value (24 <i>df</i> ) | .857 | 1.318    | 1.711 | 2.064 | 2.492 | 2.797 |
|                                 |      | t = 1.10 | )     |       |       |       |

The *t* distribution table only contains positive *t* values. Because the *t* distribution is symmetric, however, the area under the curve to the right of t = 1.10 is the same as the area under the curve to the left of t = -1.10. We see that t = 1.10 is between 0.857 and 1.318. From the "Area in Upper Tail" row, we see that the area in the tail to the right of t = 1.10 is between .20 and .10. When we double these amounts, we see that the *p*-value must be between .40 and .20. With a level of significance of  $\alpha = .05$ , we now know that the *p*-value is greater than  $\alpha$ . Therefore,  $H_0$  cannot be rejected. Sufficient evidence is not available to conclude that Holiday should change its production plan for the coming season.

Appendix F shows how the *p*-value for this test can be computed using Excel or Minitab. The *p*-value obtained is .2822. With a level of significance of  $\alpha = .05$ , we cannot reject  $H_0$  because .2822 > .05.

The test statistic can also be compared to the critical value to make the two-tailed hypothesis testing decision. With  $\alpha = .05$  and the *t* distribution with 24 degrees of freedom,  $-t_{.025} = -2.064$  and  $t_{.025} = 2.064$  are the critical values for the two-tailed test. The rejection rule using the test statistic is

Reject 
$$H_0$$
 if  $t \le -2.064$  or if  $t \ge 2.064$ 

Based on the test statistic t = -1.10,  $H_0$  cannot be rejected. This result indicates that Holiday should continue its production planning for the coming season based on the expectation that  $\mu = 40$ .

### **Summary and Practical Advice**

Table 9.3 provides a summary of the hypothesis testing procedures about a population mean for the  $\sigma$  unknown case. The key difference between these procedures and the ones for the  $\sigma$  known case is that *s* is used, instead of  $\sigma$ , in the computation of the test statistic. For this reason, the test statistic follows the *t* distribution.

The applicability of the hypothesis testing procedures of this section is dependent on the distribution of the population being sampled from and the sample size. When the population is normally distributed, the hypothesis tests described in this section provide exact results for any sample size. When the population is not normally distributed, the procedures are approximations. Nonetheless, we find that sample sizes of 30 or greater will provide good results in most cases. If the population is approximately normal, small sample sizes (e.g., n < 15) can provide acceptable results. If the population is highly skewed or contains outliers, sample sizes approaching 50 are recommended.

|                                               | Lower Tail Test                                                     | Upper Tail Test                                  | <b>Two-Tailed Test</b>                                                 |
|-----------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------|------------------------------------------------------------------------|
| Hypotheses                                    | $\begin{split} H_0: \mu \geq \mu_0 \\ H_a: \mu < \mu_0 \end{split}$ | $H_0: \mu \le \mu_0$ $H_a: \mu > \mu_0$          | $H_0: \mu = \mu_0$ $H_a: \mu \neq \mu_0$                               |
| Test Statistic                                | $t = \frac{\bar{x} - \mu_0}{s / \sqrt{n}}$                          | $t = \frac{\bar{x} - \mu_0}{s / \sqrt{n}}$       | $t = \frac{\bar{x} - \mu_0}{s/\sqrt{n}}$                               |
| Rejection Rule:<br><i>p</i> -Value Approach   | Reject $H_0$ if<br><i>p</i> -value $\leq \alpha$                    | Reject $H_0$ if<br><i>p</i> -value $\leq \alpha$ | Reject $H_0$ if<br><i>p</i> -value $\leq \alpha$                       |
| Rejection Rule:<br>Critical Value<br>Approach | Reject $H_0$ if $t \le -t_\alpha$                                   | Reject $H_0$ if $t \ge t_\alpha$                 | Reject $H_0$ if<br>$t \le -t_{\alpha/2}$<br>or if $t \ge t_{\alpha/2}$ |

# **TABLE 9.3**SUMMARY OF HYPOTHESIS TESTS ABOUT A POPULATION MEAN:<br/> $\sigma$ UNKNOWN CASE

#### **Exercises**

### **Methods**

23. Consider the following hypothesis test:

$$H_0: \mu \le 12$$
  
 $H_a: \mu > 12$ 

A sample of 25 provided a sample mean  $\bar{x} = 14$  and a sample standard deviation s = 4.32.

- a. Compute the value of the test statistic.
- b. Use the t distribution table (Table 2 in Appendix B) to compute a range for the p-value.
- c. At  $\alpha = .05$ , what is your conclusion?
- d. What is the rejection rule using the critical value? What is your conclusion?
- 24. Consider the following hypothesis test:



$$H_0: \mu = 18$$
$$H_a: \mu \neq 18$$

A sample of 48 provided a sample mean  $\bar{x} = 17$  and a sample standard deviation s = 4.5.

- a. Compute the value of the test statistic.
- b. Use the *t* distribution table (Table 2 in Appendix B) to compute a range for the *p*-value.
- c. At  $\alpha = .05$ , what is your conclusion?
- d. What is the rejection rule using the critical value? What is your conclusion?
- 25. Consider the following hypothesis test:

$$H_0: \mu \ge 45$$
  
 $H_a: \mu < 45$ 

A sample of 36 is used. Identify the *p*-value and state your conclusion for each of the following sample results. Use  $\alpha = .01$ .

- a.  $\bar{x} = 44$  and s = 5.2
- b.  $\bar{x} = 43$  and s = 4.6
- c.  $\bar{x} = 46$  and s = 5.0

#### 9.4 Population Mean: $\sigma$ Unknown

26. Consider the following hypothesis test:

$$H_0: \mu = 100$$
  
 $H_a: \mu \neq 100$ 

A sample of 65 is used. Identify the *p*-value and state your conclusion for each of the following sample results. Use  $\alpha = .05$ .

- a.  $\bar{x} = 103$  and s = 11.5
- b.  $\bar{x} = 96.5$  and s = 11.0
- c.  $\bar{x} = 102$  and s = 10.5

# **Applications**

self test

- 27. The Employment and Training Administration reported that the U.S. mean unemployment insurance benefit was \$238 per week (*The World Almanac*, 2003). A researcher in the state of Virginia anticipated that sample data would show evidence that the mean weekly unemployment insurance benefit in Virginia was below the national average.
  - a. Develop appropriate hypotheses such that rejection of  $H_0$  will support the researcher's contention.
  - b. For a sample of 100 individuals, the sample mean weekly unemployment insurance benefit was \$231 with a sample standard deviation of \$80. What is the *p*-value?
  - c. At  $\alpha = .05$ , what is your conclusion?
  - d. Repeat the preceding hypothesis test using the critical value approach.
- 28. A shareholders' group, in lodging a protest, claimed that the mean tenure for a chief exective office (CEO) was at least nine years. A survey of companies reported in *The Wall Street Journal* found a sample mean tenure of  $\bar{x} = 7.27$  years for CEOs with a standard deviation of s = 6.38 years (*The Wall Street Journal*, January 2, 2007).
  - a. Formulate hypotheses that can be used to challenge the validity of the claim made by the shareholders' group.
  - b. Assume 85 companies were included in the sample. What is the *p*-value for your hypothesis test?
  - c. At  $\alpha = .01$ , what is your conclusion?
- 29. The cost of a one-carat VS2 clarity, H color diamond from Diamond Source USA is \$5600 (Diamond Source website, March 2003). A midwestern jeweler makes calls to contacts in the diamond district of New York City to see whether the mean price of diamonds there differs from \$5600.
  - a. Formulate hypotheses that can be used to determine whether the mean price in New York City differs from \$5600.
  - b. A sample of 25 New York City contacts provided the prices shown in the file named Diamonds. What is the *p*-value?
  - c. At  $\alpha = .05$ , can the null hypothesis be rejected? What is your conclusion?
  - d. Repeat the preceding hypothesis test using the critical value approach.
- 30. AOL Time Warner Inc.'s CNN has been the longtime ratings leader of cable television news. Nielsen Media Research indicated that the mean CNN viewing audience was 600,000 viewers per day during 2002 (*The Wall Street Journal*, March 10, 2003). Assume that for a sample of 40 days during the first half of 2003, the daily audience was 612,000 viewers with a sample standard deviation of 65,000 viewers.
  - a. What are the hypotheses if CNN management would like information on any change in the CNN viewing audience?
  - b. What is the *p*-value?
  - c. Select your own level of significance. What is your conclusion?
  - d. What recommendation would you make to CNN management in this application?
- 31. The Coca-Cola Company reported that the mean per capita annual sales of its beverages in the United States was 423 eight-ounce servings (Coca-Cola Company website, February 3,



2009). Suppose you are curious whether the consumption of Coca-Cola beverages is higher in Atlanta, Georgia, the location of Coca-Cola's corporate headquarters. A sample of 36 individuals from the Atlanta area showed a sample mean annual consumption of 460.4 eight-ounce servings with a standard deviation of s = 101.9 ounces. Using  $\alpha = .05$ , do the sample results support the conclusion that mean annual consumption of Coca-Cola beverage products is higher in Atlanta?

- 32. According to the National Automobile Dealers Association, the mean price for used cars is \$10,192. A manager of a Kansas City used car dealership reviewed a sample of 50 recent used car sales at the dealership in an attempt to determine whether the population mean price for used cars at this particular dealership differed from the national mean. The prices for the sample of 50 cars are shown in the file named Used-Cars.
  - a. Formulate the hypotheses that can be used to determine whether a difference exists in the mean price for used cars at the dealership.
  - b. What is the *p*-value?
  - c. At  $\alpha = .05$ , what is your conclusion?
- 33. Annual per capita consumption of milk is 21.6 gallons (*Statistical Abstract of the United States: 2006*). Being from the Midwest, you believe milk consumption is higher there and wish to support your opinion. A sample of 16 individuals from the midwestern town of Webster City showed a sample mean annual consumption of 24.1 gallons with a standard deviation of s = 4.8.
  - a. Develop a hypothesis test that can be used to determine whether the mean annual consumption in Webster City is higher than the national mean.
  - b. What is a point estimate of the difference between mean annual consumption in Webster City and the national mean?
  - c. At  $\alpha = .05$ , test for a significant difference. What is your conclusion?
- 34. Joan's Nursery specializes in custom-designed landscaping for residential areas. The estimated labor cost associated with a particular landscaping proposal is based on the number of plantings of trees, shrubs, and so on to be used for the project. For cost-estimating purposes, managers use two hours of labor time for the planting of a medium-sized tree. Actual times from a sample of 10 plantings during the past month follow (times in hours).

```
1.7 1.5 2.6 2.2 2.4 2.3 2.6 3.0 1.4 2.3
```

With a .05 level of significance, test to see whether the mean tree-planting time differs from two hours.

- a. State the null and alternative hypotheses.
- b. Compute the sample mean.
- c. Compute the sample standard deviation.
- d. What is the *p*-value?
- e. What is your conclusion?

# 9.5

# **Population Proportion**

In this section we show how to conduct a hypothesis test about a population proportion p. Using  $p_0$  to denote the hypothesized value for the population proportion, the three forms for a hypothesis test about a population proportion are as follows.

$$\begin{aligned} H_0: p \ge p_0 & H_0: p \le p_0 & H_0: p = p_0 \\ H_a: p < p_0 & H_a: p > p_0 & H_a: p \ne p_0 \end{aligned}$$



The first form is called a lower tail test, the second form is called an upper tail test, and the third form is called a two-tailed test.

Hypothesis tests about a population proportion are based on the difference between the sample proportion  $\bar{p}$  and the hypothesized population proportion  $p_0$ . The methods used to conduct the hypothesis test are similar to those used for hypothesis tests about a population mean. The only difference is that we use the sample proportion and its standard error to compute the test statistic. The *p*-value approach or the critical value approach is then used to determine whether the null hypothesis should be rejected.

Let us consider an example involving a situation faced by Pine Creek golf course. Over the past year, 20% of the players at Pine Creek were women. In an effort to increase the proportion of women players, Pine Creek implemented a special promotion designed to attract women golfers. One month after the promotion was implemented, the course manager requested a statistical study to determine whether the proportion of women players at Pine Creek had increased. Because the objective of the study is to determine whether the proportion of women golfers increased, an upper tail test with  $H_a$ : p > .20 is appropriate. The null and alternative hypotheses for the Pine Creek hypothesis test are as follows:

$$H_0: p \le .20$$
  
 $H_a: p > .20$ 

If  $H_0$  can be rejected, the test results will give statistical support for the conclusion that the proportion of women golfers increased and the promotion was beneficial. The course manager specified that a level of significance of  $\alpha = .05$  be used in carrying out this hypothesis test.

The next step of the hypothesis testing procedure is to select a sample and compute the value of an appropriate test statistic. To show how this step is done for the Pine Creek upper tail test, we begin with a general discussion of how to compute the value of the test statistic for any form of a hypothesis test about a population proportion. The sampling distribution of  $\bar{p}$ , the point estimator of the population parameter p, is the basis for developing the test statistic.

When the null hypothesis is true as an equality, the expected value of  $\bar{p}$  equals the hypothesized value  $p_0$ ; that is,  $E(\bar{p}) = p_0$ . The standard error of  $\bar{p}$  is given by

$$\sigma_{\bar{p}} = \sqrt{\frac{p_0(1-p_0)}{n}}$$

In Chapter 7 we said that if  $np \ge 5$  and  $n(1 - p) \ge 5$ , the sampling distribution of  $\bar{p}$  can be approximated by a normal distribution.<sup>3</sup> Under these conditions, which usually apply in practice, the quantity

$$z = \frac{\bar{p} - p_0}{\sigma_{\bar{p}}} \tag{9.3}$$

has a standard normal probability distribution. With  $\sigma_{\bar{p}} = \sqrt{p_0(1 - p_0)/n}$ , the standard normal random variable *z* is the test statistic used to conduct hypothesis tests about a population proportion.

<sup>&</sup>lt;sup>3</sup>In most applications involving hypothesis tests of a population proportion, sample sizes are large enough to use the normal approximation. The exact sampling distribution of  $\bar{p}$  is discrete with the probability for each value of  $\bar{p}$  given by the binomial distribution. So hypothesis testing is a bit more complicated for small samples when the normal approximation cannot be used.

TEST STATISTIC FOR HYPOTHESIS TESTS ABOUT A POPULATION PROPORTION

$$z = \frac{p - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$$
(9.4)



We can now compute the test statistic for the Pine Creek hypothesis test. Suppose a random sample of 400 players was selected, and that 100 of the players were women. The proportion of women golfers in the sample is

$$\bar{p} = \frac{100}{400} = .25$$

Using equation (9.4), the value of the test statistic is

$$z = \frac{\bar{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} = \frac{.25 - .20}{\sqrt{\frac{.20(1 - .20)}{400}}} = \frac{.05}{.02} = 2.50$$

Because the Pine Creek hypothesis test is an upper tail test, the *p*-value is the probability that *z* is greater than or equal to z = 2.50; that is, it is the area under the standard normal curve for  $z \ge 2.50$ . Using the standard normal probability table, we find that the area to the left of z = 2.50 is .9938. Thus, the *p*-value for the Pine Creek test is 1.0000 - .9938 = .0062. Figure 9.7 shows this *p*-value calculation.

Recall that the course manager specified a level of significance of  $\alpha = .05$ . A *p*-value = .0062 < .05 gives sufficient statistical evidence to reject  $H_0$  at the .05 level of significance. Thus, the test provides statistical support for the conclusion that the special promotion increased the proportion of women players at the Pine Creek golf course.

The decision whether to reject the null hypothesis can also be made using the critical value approach. The critical value corresponding to an area of .05 in the upper tail of a normal probability distribution is  $z_{.05} = 1.645$ . Thus, the rejection rule using the critical value approach is to reject  $H_0$  if  $z \ge 1.645$ . Because z = 2.50 > 1.645,  $H_0$  is rejected.

Again, we see that the *p*-value approach and the critical value approach lead to the same hypothesis testing conclusion, but the *p*-value approach provides more information. With a





|                                               | Lower Tail Test                                           | Upper Tail Test                                                  | <b>Two-Tailed Test</b>                                                 |
|-----------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------|
| Hypotheses                                    | $H_0: p \ge p_0$ $H_a: p < p_0$                           | $ \begin{array}{c} H_0: p \leq p_0 \\ H_a: p > p_0 \end{array} $ | $H_0: p = p_0$ $H_a: p \neq p_0$                                       |
| Test Statistic                                | $z = \frac{\bar{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$ | $z = \frac{\bar{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$        | $z = \frac{\bar{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$              |
| Rejection Rule:<br><i>p</i> -Value Approach   | Reject $H_0$ if<br><i>p</i> -value $\leq \alpha$          | Reject $H_0$ if<br><i>p</i> -value $\leq \alpha$                 | Reject $H_0$ if<br><i>p</i> -value $\leq \alpha$                       |
| Rejection Rule:<br>Critical Value<br>Approach | Reject $H_0$ if $z \le -z_\alpha$                         | Reject $H_0$ if $z \ge z_\alpha$                                 | Reject $H_0$ if<br>$z \le -z_{\alpha/2}$<br>or if $z \ge z_{\alpha/2}$ |

#### TABLE 9.4 SUMMARY OF HYPOTHESIS TESTS ABOUT A POPULATION PROPORTION

p-value = .0062, the null hypothesis would be rejected for any level of significance greater than or equal to .0062.

#### Summary

The procedure used to conduct a hypothesis test about a population proportion is similar to the procedure used to conduct a hypothesis test about a population mean. Although we only illustrated how to conduct a hypothesis test about a population proportion for an upper tail test, similar procedures can be used for lower tail and two-tailed tests. Table 9.4 provides a summary of the hypothesis tests about a population proportion. We assume that  $np \ge 5$  and  $n(1 - p) \ge 5$ ; thus the normal probability distribution can be used to approximate the sampling distribution of  $\bar{p}$ .

#### **Exercises**

#### **Methods**

35. Consider the following hypothesis test:

$$H_0: p = .20$$
  
 $H_a: p \neq .20$ 

A sample of 400 provided a sample proportion  $\bar{p} = .175$ .

- a. Compute the value of the test statistic.
- b. What is the *p*-value?
- c. At  $\alpha = .05$ , what is your conclusion?
- d. What is the rejection rule using the critical value? What is your conclusion?

36. Consider the following hypothesis test:



$$H_0: p \ge .75$$
  
 $H_a: p < .75$ 

A sample of 300 items was selected. Compute the *p*-value and state your conclusion for each of the following sample results. Use  $\alpha = .05$ .

a. 
$$\bar{p} = .68$$
c.  $\bar{p} = .70$ b.  $\bar{p} = .72$ d.  $\bar{p} = .77$ 

# **Applications**

- 37. A study found that, in 2005, 12.5% of U.S. workers belonged to unions (The Wall Street Journal, January 21, 2006). Suppose a sample of 400 U.S. workers is collected in 2006 to determine whether union efforts to organize have increased union membership.
  - Formulate the hypotheses that can be used to determine whether union membership a. increased in 2006.
  - If the sample results show that 52 of the workers belonged to unions, what is the b. *p*-value for your hypothesis test?
  - c. At  $\alpha = .05$ , what is your conclusion?
- 38. A study by *Consumer Reports* showed that 64% of supermarket shoppers believe supermarket brands to be as good as national name brands. To investigate whether this result applies to its own product, the manufacturer of a national name-brand ketchup asked a sample of shoppers whether they believed that supermarket ketchup was as good as the national brand ketchup.
  - Formulate the hypotheses that could be used to determine whether the percentage of a. supermarket shoppers who believe that the supermarket ketchup was as good as the national brand ketchup differed from 64%.
  - If a sample of 100 shoppers showed 52 stating that the supermarket brand was as good b. as the national brand, what is the *p*-value?
  - At  $\alpha = .05$ , what is your conclusion? с.
  - d. Should the national brand ketchup manufacturer be pleased with this conclusion? Explain.
- AgeGroup
- WEB III (

SELF C

- 39. Accroding to the Pew Internet & American Life Project, 75% of American adults use the Internet (Pew Internet website, April 19, 2008). The Pew project authors also reported on the percentage of Americans who use the Internet by age group. The data in the file AgeGroup are consistent with their findings. These data were obtained from a sample of 100 Internet users in the 30-49 age group and 200 Internet users in the 50-64 age group. A Yes indicates the survey repondent had used the Internet; a No indicates the survey repondent had not.
  - Formulate hypotheses that could be used to determine whether the percentage of Ina. ternet users in the two age groups differs from the overall average of 75%
  - Estimate the proportion of Internet users in the 30-49 age group. Does this proportion b. differ significantly from the overall proportion of .75? Use  $\alpha = .05$
  - Estimate the proportion of Internet users in the 50–64 age group. Does this proportion c. differ significantly from the overall proportion of .75? Use  $\alpha = .05$
  - d. Would you expect the proportion of users in the 18–29 age group to be larger or smaller than the proportion for the 30-49 age group? Support you conclusion with the results obtained in parts (b) and (c).
- 40. Before the 2003 Super Bowl, ABC predicted that 22% of the Super Bowl audience would express an interest in seeing one of its forthcoming new television shows, including 8 Simple Rules, Are You Hot?, and Dragnet. ABC ran commercials for these television shows during the Super Bowl. The day after the Super Bowl, Intermediate Advertising Group of New York sampled 1532 viewers who saw the commercials and found that 414 said that they would watch one of the ABC advertised television shows (The Wall Street Journal, January 30, 2003).
  - What is the point estimate of the proportion of the audience that said they would watch a. the television shows after seeing the television commercials?
  - b. At  $\alpha = .05$ , determine whether the intent to watch the ABC television shows significantly increased after seeing the television commercials. Formulate the appropriate hypotheses, compute the *p*-value, and state your conclusion.
  - c. Why are such studies valuable to companies and advertising firms?
- 41. Speaking to a group of analysts in January 2006, a brokerage firm executive claimed that at least 70% of investors are currently confident of meeting their investment objectives. A UBS Investor Optimism Survey, conducted over the period January 2 to January 15,

found that 67% of investors were confident of meeting their investment objectives (CNBC, January 20, 2006).

- a. Formulate the hypotheses that can be used to test the validity of the brokerage firm executive's claim.
- b. Assume the UBS Investor Optimism Survey collected information from 300 investors. What is the *p*-value for the hypothesis test?
- c. At  $\alpha = .05$ , should the executive's claim be rejected?
- 42. According to the University of Nevada Center for Logistics Management, 6% of all merchandise sold in the United States gets returned (*BusinessWeek*, January 15, 2007). A Houston department store sampled 80 items sold in January and found that 12 of the items were returned.
  - a. Construct a point estimate of the proportion of items returned for the population of sales transactions at the Houston store.
  - b. Construct a 95% confidence interval for the porportion of returns at the Houston store.
  - c. Is the proportion of returns at the Houston store significantly different from the returns for the nation as a whole? Provide statistical support for your answer.
- 43. Eagle Outfitters is a chain of stores specializing in outdoor apparel and camping gear. They are considering a promotion that involves mailing discount coupons to all their credit card customers. This promotion will be considered a success if more than 10% of those receiving the coupons use them. Before going national with the promotion, coupons were sent to a sample of 100 credit card customers.
  - a. Develop hypotheses that can be used to test whether the population proportion of those who will use the coupons is sufficient to go national.
  - b. The file Eagle contains the sample data. Develop a point estimate of the population proportion.
  - c. Use  $\alpha = .05$  to conduct your hypothesis test. Should Eagle go national with the promotion?
- 44. In a cover story, *BusinessWeek* published information about sleep habits of Americans (*BusinessWeek*, January 26, 2004). The article noted that sleep deprivation causes a number of problems, including highway deaths. Fifty-one percent of adult drivers admit to driving while drowsy. A researcher hypothesized that this issue was an even bigger problem for night shift workers.
  - a. Formulate the hypotheses that can be used to help determine whether more than 51% of the population of night shift workers admit to driving while drowsy.
  - b. A sample of 400 night shift workers identified those who admitted to driving while drowsy. See the Drowsy file. What is the sample proportion? What is the *p*-value?
  - c. At  $\alpha = .01$ , what is your conclusion?
- 45. Many investors and financial analysts believe the Dow Jones Industrial Average (DJIA) provides a good barometer of the overall stock market. On January 31, 2006, 9 of the 30 stocks making up the DJIA increased in price (*The Wall Street Journal*, February 1, 2006). On the basis of this fact, a financial analyst claims we can assume that 30% of the stocks traded on the New York Stock Exchange (NYSE) went up the same day.
  - a. Formulate null and alternative hypotheses to test the analyst's claim.
  - b. A sample of 50 stocks traded on the NYSE that day showed that 24 went up. What is your point estimate of the population proportion of stocks that went up?
  - c. Conduct your hypothesis test using  $\alpha = .01$  as the level of significance. What is your conclusion?

9.6

# Hypothesis Testing and Decision Making

In the previous sections of this chapter we have illustrated hypothesis testing applications that are considered significance tests. After formulating the null and alternative hypotheses, we selected a sample and computed the value of a test statistic and the associated *p*-value.



WEB III

Eagle

We then compared the *p*-value to a controlled probability of a Type I error,  $\alpha$ , which is called the level of significance for the test. If *p*-value  $\leq \alpha$ , we made the conclusion "reject  $H_0$ " and declared the results significant; otherwise, we made the conclusion "do not reject  $H_0$ ." With a significance test, we control the probability of making the Type I error, but not the Type II error. Thus, we recommended the conclusion "do not reject  $H_0$ " rather than "accept  $H_0$ " because the latter puts us at risk of making the Type II error of accepting  $H_0$  when it is false. With the conclusion "do not reject  $H_0$ ," the statistical evidence is considered inconclusive and is usually an indication to postpone a decision or action until further research and testing can be undertaken.

However, if the purpose of a hypothesis test is to make a decision when  $H_0$  is true and a different decision when  $H_a$  is true, the decision maker may want to, and in some cases be forced to, take action with both the conclusion *do not reject*  $H_0$  and the conclusion *reject*  $H_0$ . If this situation occurs, statisticians generally recommend controlling the probability of making a Type II error. With the probabilities of both the Type I and Type II error controlled, the conclusion from the hypothesis test is either to *accept*  $H_0$  or *reject*  $H_0$ . In the first case,  $H_0$  is concluded to be true, while in the second case,  $H_a$  is concluded true. Thus, a decision and appropriate action can be taken when either conclusion is reached.

A good illustration of hypothesis testing for decision making is lot-acceptance sampling, a topic we will discuss in more depth in Chapter 20. For example, a quality control manager must decide to accept a shipment of batteries from a supplier or to return the shipment because of poor quality. Assume that design specifications require batteries from the supplier to have a mean useful life of at least 120 hours. To evaluate the quality of an incoming shipment, a sample of 36 batteries will be selected and tested. On the basis of the sample, a decision must be made to accept the shipment of batteries or to return it to the supplier because of poor quality. Let  $\mu$  denote the mean number of hours of useful life for batteries in the shipment. The null and alternative hypotheses about the population mean follow.

$$H_0: \mu \ge 120$$
  
 $H_a: \mu < 120$ 

If  $H_0$  is rejected, the alternative hypothesis is concluded to be true. This conclusion indicates that the appropriate action is to return the shipment to the supplier. However, if  $H_0$  is not rejected, the decision maker must still determine what action should be taken. Thus, without directly concluding that  $H_0$  is true, but merely by not rejecting it, the decision maker will have made the decision to accept the shipment as being of satisfactory quality.

In such decision-making situations, it is recommended that the hypothesis testing procedure be extended to control the probability of making a Type II error. Because a decision will be made and action taken when we do not reject  $H_0$ , knowledge of the probability of making a Type II error will be helpful. In Sections 9.7 and 9.8 we explain how to compute the probability of making a Type II error and how the sample size can be adjusted to help control the probability of making a Type II error.

9.7

# Calculating the Probability of Type II Errors

In this section we show how to calculate the probability of making a Type II error for a hypothesis test about a population mean. We illustrate the procedure by using the lot-acceptance example described in Section 9.6. The null and alternative hypotheses about the mean number of hours of useful life for a shipment of batteries are  $H_0$ :  $\mu \ge 120$  and  $H_a$ :  $\mu < 120$ . If  $H_0$  is rejected, the decision will be to return the shipment to the supplier

because the mean hours of useful life are less than the specified 120 hours. If  $H_0$  is not rejected, the decision will be to accept the shipment.

Suppose a level of significance of  $\alpha = .05$  is used to conduct the hypothesis test. The test statistic in the  $\sigma$  known case is

$$z = \frac{\bar{x} - \mu_0}{\sigma/\sqrt{n}} = \frac{\bar{x} - 120}{\sigma/\sqrt{n}}$$

Based on the critical value approach and  $z_{.05} = 1.645$ , the rejection rule for the lower tail test is

Reject 
$$H_0$$
 if  $z \le -1.645$ 

Suppose a sample of 36 batteries will be selected and based upon previous testing the population standard deviation can be assumed known with a value of  $\sigma = 12$  hours. The rejection rule indicates that we will reject  $H_0$  if

$$z = \frac{\bar{x} - 120}{12/\sqrt{36}} \le -1.645$$

Solving for  $\bar{x}$  in the preceding expression indicates that we will reject  $H_0$  if

$$\bar{x} \le 120 - 1.645 \left(\frac{12}{\sqrt{36}}\right) = 116.71$$

Rejecting  $H_0$  when  $\bar{x} \le 116.71$  means that we will make the decision to accept the shipment whenever

$$\bar{x} > 116.71$$

With this information, we are ready to compute probabilities associated with making a Type II error. First, recall that we make a Type II error whenever the true shipment mean is less than 120 hours and we make the decision to accept  $H_0$ :  $\mu \ge 120$ . Hence, to compute the probability of making a Type II error, we must select a value of  $\mu$  less than 120 hours. For example, suppose the shipment is considered to be of poor quality if the batteries have a mean life of  $\mu = 112$  hours. If  $\mu = 112$  is really true, what is the probability of accepting  $H_0$ :  $\mu \ge 120$  and hence committing a Type II error? Note that this probability is the probability that the sample mean  $\bar{x}$  is greater than 116.71 when  $\mu = 112$ .

Figure 9.8 shows the sampling distribution of  $\bar{x}$  when the mean is  $\mu = 112$ . The shaded area in the upper tail gives the probability of obtaining  $\bar{x} > 116.71$ . Using the standard normal distribution, we see that at  $\bar{x} = 116.71$ 

$$z = \frac{\bar{x} - \mu}{\sigma/\sqrt{n}} = \frac{116.71 - 112}{12/\sqrt{36}} = 2.36$$

The standard normal probability table shows that with z = 2.36, the area in the upper tail is 1.0000 - .9909 = .0091. Thus, .0091 is the probability of making a Type II error when  $\mu = 112$ . Denoting the probability of making a Type II error as  $\beta$ , we see that when  $\mu = 112$ ,  $\beta = .0091$ . Therefore, we can conclude that if the mean of the population is 112 hours, the probability of making a Type II error is only .0091.

#### **FIGURE 9.8** PROBABILITY OF A TYPE II ERROR WHEN $\mu = 112$



We can repeat these calculations for other values of  $\mu$  less than 120. Doing so will show a different probability of making a Type II error for each value of  $\mu$ . For example, suppose the shipment of batteries has a mean useful life of  $\mu = 115$  hours. Because we will accept  $H_0$  whenever  $\bar{x} > 116.71$ , the z value for  $\mu = 115$  is given by

$$z = \frac{\bar{x} - \mu}{\sigma / \sqrt{n}} = \frac{116.71 - 115}{12 / \sqrt{36}} = .86$$

From the standard normal probability table, we find that the area in the upper tail of the standard normal distribution for z = .86 is 1.0000 - .8051 = .1949. Thus, the probability of making a Type II error is  $\beta = .1949$  when the true mean is  $\mu = 115$ .

In Table 9.5 we show the probability of making a Type II error for a variety of values of  $\mu$  less than 120. Note that as  $\mu$  increases toward 120, the probability of making a Type II error increases toward an upper bound of .95. However, as  $\mu$  decreases to values farther below 120, the probability of making a Type II error diminishes. This pattern is what we should expect. When the true population mean  $\mu$  is close to the null hypothesis value of  $\mu = 120$ , the probability is high that we will make a Type II error. However, when the true population mean  $\mu$  is far below the null hypothesis value of  $\mu = 120$ , the probability is low that we will make a Type II error.

# TABLE 9.5PROBABILITY OF MAKING A TYPE II ERROR FOR THE LOT-ACCEPTANCE<br/>HYPOTHESIS TEST

| Value of <i>µ</i> | $z = \frac{116.71 - \mu}{12/\sqrt{36}}$ | Probability of a Type II Error ( $\beta$ ) | Power $(1 - \beta)$ |
|-------------------|-----------------------------------------|--------------------------------------------|---------------------|
| 112               | 2.36                                    | .0091                                      | .9909               |
| 114               | 1.36                                    | .0869                                      | .9131               |
| 115               | .86                                     | .1949                                      | .8051               |
| 116.71            | .00                                     | .5000                                      | .5000               |
| 117               | 15                                      | .5596                                      | .4404               |
| 118               | 65                                      | .7422                                      | .2578               |
| 119.999           | -1.645                                  | .9500                                      | .0500               |

As Table 9.5 shows, the probability of a Type II error depends on the value of the population mean  $\mu$ . For values of  $\mu$  near  $\mu_0$ , the probability of making the Type II error can be high.

FIGURE 9.9 POWER CURVE FOR THE LOT-ACCEPTANCE HYPOTHESIS TEST



The probability of correctly rejecting  $H_0$  when it is false is called the **power** of the test. For any particular value of  $\mu$ , the power is  $1 - \beta$ ; that is, the probability of correctly rejecting the null hypothesis is 1 minus the probability of making a Type II error. Values of power are also listed in Table 9.5. On the basis of these values, the power associated with each value of  $\mu$  is shown graphically in Figure 9.9. Such a graph is called a **power curve**. Note that the power curve extends over the values of  $\mu$  for which the null hypothesis is false. The height of the power curve at any value of  $\mu$  indicates the probability of correctly rejecting  $H_0$  when  $H_0$  is false.<sup>4</sup>

In summary, the following step-by-step procedure can be used to compute the probability of making a Type II error in hypothesis tests about a population mean.

- 1. Formulate the null and alternative hypotheses.
- 2. Use the level of significance  $\alpha$  and the critical value approach to determine the critical value and the rejection rule for the test.
- **3.** Use the rejection rule to solve for the value of the sample mean corresponding to the critical value of the test statistic.
- 4. Use the results from step 3 to state the values of the sample mean that lead to the acceptance of  $H_0$ . These values define the acceptance region for the test.
- 5. Use the sampling distribution of  $\bar{x}$  for a value of  $\mu$  satisfying the alternative hypothesis, and the acceptance region from step 4, to compute the probability that the sample mean will be in the acceptance region. This probability is the probability of making a Type II error at the chosen value of  $\mu$ .

### **Exercises**

#### Methods



46. Consider the following hypothesis test.

 $H_0: \mu \ge 10$  $H_a: \mu < 10$ 

<sup>4</sup>Another graph, called the *operating characteristic curve*, is sometimes used to provide information about the probability of making a Type II error. The operating characteristic curve shows the probability of accepting  $H_0$  and thus provides  $\beta$  for the values of  $\mu$  where the null hypothesis is false. The probability of making a Type II error can be read directly from this graph.

The sample size is 120 and the population standard deviation is assumed known with  $\sigma = 5$ . Use  $\alpha = .05$ .

- a. If the population mean is 9, what is the probability that the sample mean leads to the conclusion *do not reject*  $H_0$ ?
- b. What type of error would be made if the actual population mean is 9 and we conclude that  $H_0: \mu \ge 10$  is true?
- c. What is the probability of making a Type II error if the actual population mean is 8?
- 47. Consider the following hypothesis test.

$$H_0: \mu = 20$$
$$H_a: \mu \neq 20$$

A sample of 200 items will be taken and the population standard deviation is  $\sigma = 10$ . Use  $\alpha = .05$ . Compute the probability of making a Type II error if the population mean is:

- a.  $\mu = 18.0$ b.  $\mu = 22.5$
- c.  $\mu = 21.0$

# Applications

- 48. Fowle Marketing Research, Inc., bases charges to a client on the assumption that telephone surveys can be completed within 15 minutes or less. If more time is required, a premium rate is charged. With a sample of 35 surveys, a population standard deviation of 4 minutes, and a level of significance of .01, the sample mean will be used to test the null hypothesis  $H_0$ :  $\mu \le 15$ .
  - a. What is your interpretation of the Type II error for this problem? What is its impact on the firm?
  - b. What is the probability of making a Type II error when the actual mean time is  $\mu = 17$  minutes?
  - c. What is the probability of making a Type II error when the actual mean time is  $\mu = 18$  minutes?
  - d. Sketch the general shape of the power curve for this test.
- 49. A consumer research group is interested in testing an automobile manufacturer's claim that a new economy model will travel at least 25 miles per gallon of gasoline ( $H_0$ :  $\mu \ge 25$ ).
  - a. With a .02 level of significance and a sample of 30 cars, what is the rejection rule based on the value of  $\bar{x}$  for the test to determine whether the manufacturer's claim should be rejected? Assume that  $\sigma$  is 3 miles per gallon.
  - b. What is the probability of committing a Type II error if the actual mileage is 23 miles per gallon?
  - c. What is the probability of committing a Type II error if the actual mileage is 24 miles per gallon?
  - d. What is the probability of committing a Type II error if the actual mileage is 25.5 miles per gallon?
- 50. Young Adult magazine states the following hypotheses about the mean age of its subscribers.

$$H_0: \mu = 28$$
$$H_a: \mu \neq 28$$

- a. What would it mean to make a Type II error in this situation?
- b. The population standard deviation is assumed known at  $\sigma = 6$  years and the sample size is 100. With  $\alpha = .05$ , what is the probability of accepting  $H_0$  for  $\mu$  equal to 26, 27, 29, and 30?
- c. What is the power at  $\mu = 26$ ? What does this result tell you?



51. A production line operation is tested for filling weight accuracy using the following hypotheses.

| Hypothesis           | Conclusion and Action                         |
|----------------------|-----------------------------------------------|
| $H_0: \mu = 16$      | Filling okay; keep running                    |
| $H_{a}: \mu \neq 16$ | Filling off standard; stop and adjust machine |

The sample size is 30 and the population standard deviation is  $\sigma = .8$ . Use  $\alpha = .05$ .

- a. What would a Type II error mean in this situation?
- b. What is the probability of making a Type II error when the machine is overfilling by .5 ounces?
- c. What is the power of the statistical test when the machine is overfilling by .5 ounces?
- d. Show the power curve for this hypothesis test. What information does it contain for the production manager?
- 52. Refer to exercise 48. Assume the firm selects a sample of 50 surveys and repeat parts (b) and (c). What observation can you make about how increasing the sample size affects the probability of making a Type II error?
- 53. Sparr Investments, Inc., specializes in tax-deferred investment opportunities for its clients. Recently Sparr offered a payroll deduction investment program for the employees of a particular company. Sparr estimates that the employees are currently averaging \$100 or less per month in tax-deferred investments. A sample of 40 employees will be used to test Sparr's hypothesis about the current level of investment activity among the population of employees. Assume the employee monthly tax-deferred investment amounts have a standard deviation of \$75 and that a .05 level of significance will be used in the hypothesis test.
  - a. What is the Type II error in this situation?
  - b. What is the probability of the Type II error if the actual mean employee monthly investment is \$120?
  - c. What is the probability of the Type II error if the actual mean employee monthly investment is \$130?
  - d. Assume a sample size of 80 employees is used and repeat parts (b) and (c).

# 9.8

# Determining the Sample Size for a Hypothesis Test About a Population Mean

Assume that a hypothesis test is to be conducted about the value of a population mean. The level of significance specified by the user determines the probability of making a Type I error for the test. By controlling the sample size, the user can also control the probability of making a Type II error. Let us show how a sample size can be determined for the following lower tail test about a population mean.

$$H_0: \mu \ge \mu_0$$
$$H_a: \mu < \mu_0$$

The upper panel of Figure 9.10 is the sampling distribution of  $\bar{x}$  when  $H_0$  is true with  $\mu = \mu_0$ . For a lower tail test, the critical value of the test statistic is denoted  $-z_{\alpha}$ . In the upper panel of the figure the vertical line, labeled *c*, is the corresponding value of  $\bar{x}$ . Note that, if we reject  $H_0$  when  $\bar{x} \le c$ , the probability of a Type I error will be  $\alpha$ . With  $z_{\alpha}$  representing the *z* value corresponding to an area of  $\alpha$  in the upper tail of the standard normal distribution, we compute *c* using the following formula:

$$c = \mu_0 - z_a \frac{\sigma}{\sqrt{n}}$$
(9.5)



**FIGURE 9.10** DETERMINING THE SAMPLE SIZE FOR SPECIFIED LEVELS OF THE TYPE I ( $\alpha$ ) AND TYPE II ( $\beta$ ) ERRORS

The lower panel of Figure 9.10 is the sampling distribution of  $\bar{x}$  when the alternative hypothesis is true with  $\mu = \mu_a < \mu_0$ . The shaded region shows  $\beta$ , the probability of a Type II error that the decision maker will be exposed to if the null hypothesis is accepted when  $\bar{x} > c$ . With  $z_\beta$  representing the *z* value corresponding to an area of  $\beta$  in the upper tail of the standard normal distribution, we compute *c* using the following formula:

$$c = \mu_{\rm a} + z_\beta \frac{\sigma}{\sqrt{n}} \tag{9.6}$$

Now what we want to do is to select a value for c so that when we reject  $H_0$  and accept  $H_a$ , the probability of a Type I error is equal to the chosen value of  $\alpha$  and the probability of a Type II error is equal to the chosen value of  $\beta$ . Therefore, both equations (9.5) and (9.6) must provide the same value for c, and the following equation must be true.

$$\mu_0 - z_a \frac{\sigma}{\sqrt{n}} = \mu_a + z_\beta \frac{\sigma}{\sqrt{n}}$$

To determine the required sample size, we first solve for the  $\sqrt{n}$  as follows.

$$\mu_0 - \mu_a = z_\alpha \frac{\sigma}{\sqrt{n}} + z_\beta \frac{\sigma}{\sqrt{n}}$$
$$\mu_0 - \mu_a = \frac{(z_\alpha + z_\beta)\sigma}{\sqrt{n}}$$

#### 9.8 Determining the Sample Size for a Hypothesis Test About a Population Mean

and

$$\sqrt{n} = \frac{(z_{\alpha} + z_{\beta})\sigma}{(\mu_0 - \mu_a)}$$

Squaring both sides of the expression provides the following sample size formula for a onetailed hypothesis test about a population mean.

SAMPLE SIZE FOR A ONE-TAILED HYPOTHESIS TEST ABOUT A POPULATION MEAN

$$n = \frac{(z_a + z_\beta)^2 \sigma^2}{(\mu_0 - \mu_a)^2}$$
(9.7)

where

 $z_{\alpha} = z$  value providing an area of  $\alpha$  in the upper tail of a standard normal distribution  $z_{\beta} = z$  value providing an area of  $\beta$  in the upper tail of a standard normal distribution

 $\sigma$  = the population standard deviation

 $\mu_0$  = the value of the population mean in the null hypothesis

 $\mu_a$  = the value of the population mean used for the Type II error

*Note:* In a two-tailed hypothesis test, use (9.7) with  $z_{\alpha/2}$  replacing  $z_{\alpha}$ .

Although the logic of equation (9.7) was developed for the hypothesis test shown in Figure 9.10, it holds for any one-tailed test about a population mean. In a two-tailed hypothesis test about a population mean,  $z_{\alpha/2}$  is used instead of  $z_{\alpha}$  in equation (9.7).

Let us return to the lot-acceptance example from Sections 9.6 and 9.7. The design specification for the shipment of batteries indicated a mean useful life of at least 120 hours for the batteries. Shipments were rejected if  $H_0: \mu \ge 120$  was rejected. Let us assume that the quality control manager makes the following statements about the allowable probabilities for the Type I and Type II errors.

- Type I error statement: If the mean life of the batteries in the shipment is  $\mu = 120$ , I am willing to risk an  $\alpha = .05$  probability of rejecting the shipment.
- Type II error statement: If the mean life of the batteries in the shipment is five hours under the specification (i.e.,  $\mu = 115$ ), I am willing to risk a  $\beta = .10$  probability of accepting the shipment.

These statements are based on the judgment of the manager. Someone else might specify different restrictions on the probabilities. However, statements about the allowable probabilities of both errors must be made before the sample size can be determined.

In the example,  $\alpha = .05$  and  $\beta = .10$ . Using the standard normal probability distribution, we have  $z_{.05} = 1.645$  and  $z_{.10} = 1.28$ . From the statements about the error probabilities, we note that  $\mu_0 = 120$  and  $\mu_a = 115$ . Finally, the population standard deviation was assumed known at  $\sigma = 12$ . By using equation (9.7), we find that the recommended sample size for the lot-acceptance example is

$$n = \frac{(1.645 + 1.28)^2 (12)^2}{(120 - 115)^2} = 49.3$$

Rounding up, we recommend a sample size of 50.

Because both the Type I and Type II error probabilities have been controlled at allowable levels with n = 50, the quality control manager is now justified in using the *accept*  $H_0$ and *reject*  $H_0$  statements for the hypothesis test. The accompanying inferences are made with allowable probabilities of making Type I and Type II errors.

We can make three observations about the relationship among  $\alpha$ ,  $\beta$ , and the sample size *n*.

- 1. Once two of the three values are known, the other can be computed.
- **2.** For a given level of significance  $\alpha$ , increasing the sample size will reduce  $\beta$ .
- 3. For a given sample size, decreasing  $\alpha$  will increase  $\beta$ , whereas increasing  $\alpha$  will decrease  $\beta$ .

The third observation should be kept in mind when the probability of a Type II error is not being controlled. It suggests that one should not choose unnecessarily small values for the level of significance  $\alpha$ . For a given sample size, choosing a smaller level of significance means more exposure to a Type II error. Inexperienced users of hypothesis testing often think that smaller values of  $\alpha$  are always better. They are better if we are concerned only about making a Type I error. However, smaller values of  $\alpha$  have the disadvantage of increasing the probability of making a Type II error.

### **Exercises**

### Methods



54. Consider the following hypothesis test.

$$H_0: \mu \ge 10$$
  
 $H_a: \mu < 10$ 

The sample size is 120 and the population standard deviation is 5. Use  $\alpha = .05$ . If the actual population mean is 9, the probability of a Type II error is .2912. Suppose the researcher wants to reduce the probability of a Type II error to .10 when the actual population mean is 9. What sample size is recommended?

55. Consider the following hypothesis test.

$$H_0: \mu = 20$$
$$H_a: \mu \neq 20$$

The population standard deviation is 10. Use  $\alpha = .05$ . How large a sample should be taken if the researcher is willing to accept a .05 probability of making a Type II error when the actual population mean is 22?

### **Applications**

56. Suppose the project director for the Hilltop Coffee study (see Section 9.3) asked for a .10 probability of claiming that Hilltop was not in violation when it really was underfilling by 1 ounce ( $\mu_a = 2.9375$  pounds). What sample size would have been recommended?



57. A special industrial battery must have a life of at least 400 hours. A hypothesis test is to be conducted with a .02 level of significance. If the batteries from a particular production run have an actual mean use life of 385 hours, the production manager wants a sampling procedure that only 10% of the time would show erroneously that the batch is acceptable. What sample size is recommended for the hypothesis test? Use 30 hours as an estimate of the population standard deviation.

#### Summary

| $H_0: \mu$    | =      | 28 |
|---------------|--------|----|
| $H_a$ : $\mu$ | $\neq$ | 28 |

If the manager conducting the test will permit a .15 probability of making a Type II error when the true mean age is 29, what sample size should be selected? Assume  $\sigma = 6$  and a .05 level of significance.

#### 59. An automobile mileage study tested the following hypotheses.

| Hypothesis                            | Conclusion                                     |
|---------------------------------------|------------------------------------------------|
| $H_0: \mu \ge 25 \text{ mpg}$         | Manufacturer's claim supported                 |
| $H_{\rm a}$ : $\mu < 25 \mathrm{mpg}$ | Manufacturer's claim rejected; average mileage |
|                                       | per gallon less than stated                    |

For  $\sigma = 3$  and a .02 level of significance, what sample size would be recommended if the researcher wants an 80% chance of detecting that  $\mu$  is less than 25 miles per gallon when it is actually 24?

#### Summary

Hypothesis testing is a statistical procedure that uses sample data to determine whether a statement about the value of a population parameter should or should not be rejected. The hypotheses are two competing statements about a population parameter. One statement is called the null hypothesis ( $H_0$ ), and the other statement is called the alternative hypothesis ( $H_a$ ). In Section 9.1 we provided guidelines for developing hypotheses for situations frequently encountered in practice.

Whenever historical data or other information provides a basis for assuming that the population standard deviation is known, the hypothesis testing procedure for the population mean is based on the standard normal distribution. Whenever  $\sigma$  is unknown, the sample standard deviation *s* is used to estimate  $\sigma$  and the hypothesis testing procedure is based on the *t* distribution. In both cases, the quality of results depends on both the form of the population distribution and the sample size. If the population has a normal distribution, both hypothesis testing procedures are applicable, even with small sample sizes. If the population is not normally distributed, larger sample sizes are needed. General guidelines about the sample size were provided in Sections 9.3 and 9.4. In the case of hypothesis tests about a population proportion, the hypothesis testing procedure uses a test statistic based on the standard normal distribution.

In all cases, the value of the test statistic can be used to compute a *p*-value for the test. A *p*-value is a probability used to determine whether the null hypothesis should be rejected. If the *p*-value is less than or equal to the level of significance  $\alpha$ , the null hypothesis can be rejected.

Hypothesis testing conclusions can also be made by comparing the value of the test statistic to a critical value. For lower tail tests, the null hypothesis is rejected if the value of the test statistic is less than or equal to the critical value. For upper tail tests, the null hypothesis is rejected if the value of the test statistic is greater than or equal to the critical value. Two-tailed tests consist of two critical values: one in the lower tail of the sampling distribution and one in the upper tail. In this case, the null hypothesis is rejected if the value of the test statistic is less than or equal to the critical value in the lower tail or greater than or equal to the critical value in the upper tail.

Extensions of hypothesis testing procedures to include an analysis of the Type II error were also presented. In Section 9.7 we showed how to compute the probability of making a Type II error. In Section 9.8 we showed how to determine a sample size that will control for the probability of making both a Type I error and a Type II error.

#### Glossary

Null hypothesis The hypothesis tentatively assumed true in the hypothesis testing procedure. Alternative hypothesis The hypothesis concluded to be true if the null hypothesis is rejected. Type I error The error of rejecting  $H_0$  when it is true.

**Type II error** The error of accepting  $H_0$  when it is false.

**Level of significance** The probability of making a Type I error when the null hypothesis is true as an equality.

**One-tailed test** A hypothesis test in which rejection of the null hypothesis occurs for values of the test statistic in one tail of its sampling distribution.

**Test statistic** A statistic whose value helps determine whether a null hypothesis should be rejected.

*p*-value A probability that provides a measure of the evidence against the null hypothesis given by the sample. Smaller *p*-values indicate more evidence against  $H_0$ . For a lower tail test, the *p*-value is the probability of obtaining a value for the test statistic as small as or smaller than that provided by the sample. For an upper tail test, the *p*-value is the probability of obtaining a value for the test statistic as large as or larger than that provided by the sample. For a two-tailed test, the *p*-value is the probability of obtaining a value for the test statistic as large as or larger than that provided by the sample. For a two-tailed test, the *p*-value is the probability of obtaining a value for the test statistic at least as unlikely as or more unlikely than that provided by the sample.

**Critical value** A value that is compared with the test statistic to determine whether  $H_0$  should be rejected.

**Two-tailed test** A hypothesis test in which rejection of the null hypothesis occurs for values of the test statistic in either tail of its sampling distribution.

**Power** The probability of correctly rejecting  $H_0$  when it is false.

**Power Curve** A graph of the probability of rejecting  $H_0$  for all possible values of the population parameter not satisfying the null hypothesis. The power curve provides the probability of correctly rejecting the null hypothesis.

#### **Key Formulas**

Test Statistic for Hypothesis Tests About a Population Mean:  $\sigma$  Known

$$z = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}} \tag{9.1}$$

Test Statistic for Hypothesis Tests About a Population Mean:  $\sigma$  Unknown

$$t = \frac{\bar{x} - \mu_0}{s/\sqrt{n}} \tag{9.2}$$

Test Statistic for Hypothesis Tests About a Population Proportion

$$z = \frac{\bar{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$$
(9.4)

#### Sample Size for a One-Tailed Hypothesis Test About a Population Mean

$$n = \frac{(z_a + z_\beta)^2 \sigma^2}{(\mu_0 - \mu_a)^2}$$
(9.7)

In a two-tailed test, replace  $z_a$  with  $z_{a/2}$ .

#### **Supplementary Exercises**

- 60. A production line operates with a mean filling weight of 16 ounces per container. Overfilling or underfilling presents a serious problem and when detected requires the operator to shut down the production line to readjust the filling mechanism. From past data, a population standard deviation  $\sigma = .8$  ounces is assumed. A quality control inspector selects a sample of 30 items every hour and at that time makes the decision of whether to shut down the line for readjustment. The level of significance is  $\alpha = .05$ .
  - a. State the hypothesis test for this quality control application.
  - b. If a sample mean of  $\bar{x} = 16.32$  ounces were found, what is the *p*-value? What action would you recommend?
  - c. If a sample mean of  $\bar{x} = 15.82$  ounces were found, what is the *p*-value? What action would you recommend?
  - d. Use the critical value approach. What is the rejection rule for the preceding hypothesis testing procedure? Repeat parts (b) and (c). Do you reach the same conclusion?
- 61. At Western University the historical mean of scholarship examination scores for freshman applications is 900. A historical population standard deviation  $\sigma = 180$  is assumed known. Each year, the assistant dean uses a sample of applications to determine whether the mean examination score for the new freshman applications has changed.
  - a. State the hypotheses.
  - b. What is the 95% confidence interval estimate of the population mean examination score if a sample of 200 applications provided a sample mean  $\bar{x} = 935$ ?
  - c. Use the confidence interval to conduct a hypothesis test. Using  $\alpha = .05$ , what is your conclusion?
  - d. What is the *p*-value?
- 62. *Playbill* is a magazine distributed around the country to people attending musicals and other theatrical productions. The mean annual household income for the population of *Playbill* readers is \$119,155 (*Playbill*, January 2006). Assume the standard deviation is  $\sigma = $20,700$ . A San Francisco civic group has asserted that the mean for theatergoers in the Bay Area is higher. A sample of 60 theater attendees in the Bay Area showed a sample mean household income of \$126,100.
  - a. Develop hypotheses that can be used to determine whether the sample data support the conclusion that theater attendees in the Bay Area have a higher mean household income than that for all *Playbill* readers.
  - b. What is the *p*-value based on the sample of 60 theater attendees in the Bay Area?
  - c. Use  $\alpha = .01$  as the level of significance. What is your conclusion?
- 63. On Friday, Wall Street traders were anxiously awaiting the federal government's release of numbers on the January increase in nonfarm payrolls. The early consensus estimate among economists was for a growth of 250,000 new jobs (CNBC, February 3, 2006). However, a sample of 20 economists taken Thursday afternoon provided a sample mean of 266,000 with a sample standard deviation of 24,000. Financial analysts often call such a sample mean, based on late-breaking news, the *whisper number*. Treat the "consensus estimate" as the population mean. Conduct a hypothesis test to determine whether the whisper number justifies a conclusion of a statistically significant increase in the consensus estimate of economists. Use  $\alpha = .01$  as the level of significance.



64. Data released by the National Center for Health Statistics showed that the mean age at which women had their first child was 25.0 in 2006 (*The Wall Street Journal*, February 4, 2009). The reporter, Sue Shellenbarger, noted that this was the first decrease in the average age at which women had their first child in several years. A recent sample of 42 women provided the data in the website file named FirstBirth concerning the age at which these women had their first child. Do the data indicate a change from 2006 in the mean age at which women had their first child? Use  $\alpha = .05$ .

- 65. An extensive study of the cost of health care in the United States presented data showing that the mean spending per Medicare enrollee in 2003 was \$6883 (*Money*, Fall 2003). To investigate differences across the country, a researcher took a sample of 40 Medicare enrollees in Indianapolis. For the Indianapolis sample, the mean 2003 Medicare spending was \$5980 and the standard deviation was \$2518.
  - a. State the hypotheses that should be used if we would like to determine whether the mean annual Medicare spending in Indianapolis is lower than the national mean.
  - b. Use the preceding sample results to compute the test statistic and the *p*-value.
  - c. Use  $\alpha = .05$ . What is your conclusion?
  - d. Repeat the hypothesis test using the critical value approach.
- 66. The chamber of commerce of a Florida Gulf Coast community advertises that area residential property is available at a mean cost of \$125,000 or less per lot. Suppose a sample of 32 properties provided a sample mean of \$130,000 per lot and a sample standard deviation of \$12,500. Use a .05 level of significance to test the validity of the advertising claim.
- 67. The U.S. Energy Administration reported that the mean price for a gallon of regular gasoline in the United States was \$2.357 (U.S. Energy Administration, January 30, 2006). Data for a sample of regular gasoline prices at 50 service stations in the Lower Atlantic states are contained in the data file named Gasoline. Conduct a hypothesis test to determine whether the mean price for a gallon of gasoline in the Lower Atlantic states is different from the national mean. Use  $\alpha = .05$  for the level of significance, and state your conclusion.
- 68. A study by the Centers for Disease Control (CDC) found that 23.3% of adults are smokers and that roughly 70% of those who do smoke indicate that they want to quit (Associated Press, July 26, 2002). CDC reported that, of people who smoked at some point in their lives, 50% have been able to kick the habit. Part of the study suggested that the success rate for quitting rose by education level. Assume that a sample of 100 college graduates who smoked at some point in their lives showed that 64 had been able to successfully stop smoking.
  - a. State the hypotheses that can be used to determine whether the population of college graduates has a success rate higher than the overall population when it comes to breaking the smoking habit.
  - b. Given the sample data, what is the proportion of college graduates who, having smoked at some point in their lives, were able to stop smoking?
  - c. What is the *p*-value? At  $\alpha = .01$ , what is your hypothesis testing conclusion?
- 69. An airline promotion to business travelers is based on the assumption that two-thirds of business travelers use a laptop computer on overnight business trips.
  - a. State the hypotheses that can be used to test the assumption.
  - b. What is the sample proportion from an American Express sponsored survey that found 355 of 546 business travelers use a laptop computer on overnight business trips?
  - c. What is the *p*-value?
  - d. Use  $\alpha = .05$ . What is your conclusion?
- 70. Virtual call centers are staffed by individuals working out of their homes. Most home agents earn \$10 to \$15 per hour without benefits versus \$7 to \$9 per hour with benefits at a traditional call center (*BusinessWeek*, January 23, 2006). Regional Airways is considering employing home agents, but only if a level of customer satisfaction greater than 80% can be maintained. A test was conducted with home service agents. In a sample of 300 customers, 252 reported that they were satisfied with service.
  - a. Develop hypotheses for a test to determine whether the sample data support the conclusion that customer service with home agents meets the Regional Airways criterion.
  - b. What is your point estimate of the percentage of satisfied customers?
  - c. What is the *p*-value provided by the sample data?
  - d. What is your hypothesis testing conclusion? Use  $\alpha = .05$  as the level of significance.
- 71. During the 2004 election year, new polling results were reported daily. In an IBD/TIPP poll of 910 adults, 503 respondents reported that they were optimistic about the national



outlook, and President Bush's leadership index jumped 4.7 points to 55.3 (*Investor's Business Daily*, January 14, 2004).

- a. What is the sample proportion of respondents who are optimistic about the national outlook?
- b. A campaign manager wants to claim that this poll indicates that the majority of adults are optimistic about the national outlook. Construct a hypothesis test so that rejection of the null hypothesis will permit the conclusion that the proportion optimistic is greater than 50%.
- c. Use the polling data to compute the *p*-value for the hypothesis test in part (b). Explain to the manager what this *p*-value means about the level of significance of the results.
- 72. A radio station in Myrtle Beach announced that at least 90% of the hotels and motels would be full for the Memorial Day weekend. The station advised listeners to make reservations in advance if they planned to be in the resort over the weekend. On Saturday night a sample of 58 hotels and motels showed 49 with a no-vacancy sign and 9 with vacancies. What is your reaction to the radio station's claim after seeing the sample evidence? Use  $\alpha = .05$  in making the statistical test. What is the *p*-value?
- 73. According to the federal government, 24% of workers covered by their company's health care plan were not required to contribute to the premium (*Statistical Abstract of the United States: 2006*). A recent study found that 81 out of 400 workers sampled were not required to contribute to their company's health care plan.
  - a. Develop hypotheses that can be used to test whether the percent of workers not required to contribute to their company's health care plan has declined.
  - b. What is a point estimate of the proportion receiving free company-sponsored health care insurance?
  - c. Has a statistically significant decline occurred in the proportion of workers receiving free company-sponsored health care insurance? Use  $\alpha = .05$ .
- 74. Shorney Construction Company bids on projects assuming that the mean idle time per worker is 72 or fewer minutes per day. A sample of 30 construction workers will be used to test this assumption. Assume that the population standard deviation is 20 minutes.
  - a. State the hypotheses to be tested.
  - b. What is the probability of making a Type II error when the population mean idle time is 80 minutes?
  - c. What is the probability of making a Type II error when the population mean idle time is 75 minutes?
  - d. What is the probability of making a Type II error when the population mean idle time is 70 minutes?
  - e. Sketch the power curve for this problem.
- 75. A federal funding program is available to low-income neighborhoods. To qualify for the funding, a neighborhood must have a mean household income of less than \$15,000 per year. Neighborhoods with mean annual household income of \$15,000 or more do not qualify. Funding decisions are based on a sample of residents in the neighborhood. A hypothesis test with a .02 level of significance is conducted. If the funding guidelines call for a maximum probability of .05 of not funding a neighborhood with a mean annual household income of \$14,000, what sample size should be used in the funding decision study? Use  $\sigma = $4000$  as a planning value.
- 76.  $H_0: \mu = 120$  and  $H_a: \mu \neq 120$  are used to test whether a bath soap production process is meeting the standard output of 120 bars per batch. Use a .05 level of significance for the test and a planning value of 5 for the standard deviation.
  - a. If the mean output drops to 117 bars per batch, the firm wants to have a 98% chance of concluding that the standard production output is not being met. How large a sample should be selected?
  - b. With your sample size from part (a), what is the probability of concluding that the process is operating satisfactorily for each of the following actual mean outputs: 117, 118, 119, 121, 122, and 123 bars per batch? That is, what is the probability of a Type II error in each case?

# Case Problem 1 Quality Associates, Inc.

Quality Associates, Inc., a consulting firm, advises its clients about sampling and statistical procedures that can be used to control their manufacturing processes. In one particular application, a client gave Quality Associates a sample of 800 observations taken during a time in which that client's process was operating satisfactorily. The sample standard deviation for these data was .21; hence, with so much data, the population standard deviation was assumed to be .21. Quality Associates then suggested that random samples of size 30 be taken periodically to monitor the process on an ongoing basis. By analyzing the new samples, the client could quickly learn whether the process was operating satisfactorily. When the process was not operating satisfactorily, corrective action could be taken to eliminate the problem. The design specification indicated the mean for the process should be 12. The hypothesis test suggested by Quality Associates follows.

$$H_0: \mu = 12$$
  
 $H_a: \mu \neq 12$ 

Corrective action will be taken any time  $H_0$  is rejected.

The following samples were collected at hourly intervals during the first day of operation of the new statistical process control procedure. These data are available in the data set Quality.

| Sample 1 | Sample 2 | Sample 3 | Sample 4 |
|----------|----------|----------|----------|
| 11.55    | 11.62    | 11.91    | 12.02    |
| 11.62    | 11.69    | 11.36    | 12.02    |
| 11.52    | 11.59    | 11.75    | 12.05    |
| 11.75    | 11.82    | 11.95    | 12.18    |
| 11.90    | 11.97    | 12.14    | 12.11    |
| 11.64    | 11.71    | 11.72    | 12.07    |
| 11.80    | 11.87    | 11.61    | 12.05    |
| 12.03    | 12.10    | 11.85    | 11.64    |
| 11.94    | 12.01    | 12.16    | 12.39    |
| 11.92    | 11.99    | 11.91    | 11.65    |
| 12.13    | 12.20    | 12.12    | 12.11    |
| 12.09    | 12.16    | 11.61    | 11.90    |
| 11.93    | 12.00    | 12.21    | 12.22    |
| 12.21    | 12.28    | 11.56    | 11.88    |
| 12.32    | 12.39    | 11.95    | 12.03    |
| 11.93    | 12.00    | 12.01    | 12.35    |
| 11.85    | 11.92    | 12.06    | 12.09    |
| 11.76    | 11.83    | 11.76    | 11.77    |
| 12.16    | 12.23    | 11.82    | 12.20    |
| 11.77    | 11.84    | 12.12    | 11.79    |
| 12.00    | 12.07    | 11.60    | 12.30    |
| 12.04    | 12.11    | 11.95    | 12.27    |
| 11.98    | 12.05    | 11.96    | 12.29    |
| 12.30    | 12.37    | 12.22    | 12.47    |
| 12.18    | 12.25    | 11.75    | 12.03    |
| 11.97    | 12.04    | 11.96    | 12.17    |
| 12.17    | 12.24    | 11.95    | 11.94    |
| 11.85    | 11.92    | 11.89    | 11.97    |
| 12.30    | 12.37    | 11.88    | 12.23    |
| 12.15    | 12.22    | 11.93    | 12.25    |



### **Managerial Report**

- 1. Conduct a hypothesis test for each sample at the .01 level of significance and determine what action, if any, should be taken. Provide the test statistic and *p*-value for each test.
- **2.** Compute the standard deviation for each of the four samples. Does the assumption of .21 for the population standard deviation appear reasonable?
- 3. Compute limits for the sample mean  $\bar{x}$  around  $\mu = 12$  such that, as long as a new sample mean is within those limits, the process will be considered to be operating satisfactorily. If  $\bar{x}$  exceeds the upper limit or if  $\bar{x}$  is below the lower limit, corrective action will be taken. These limits are referred to as upper and lower control limits for quality control purposes.
- **4.** Discuss the implications of changing the level of significance to a larger value. What mistake or error could increase if the level of significance is increased?

# Case Problem 2 Ethical Behavior of Business Students at Bayview University

During the global recession of 2008 and 2009, there were many accusations of unethical behavior by Wall Street executives, financial managers, and other corporate officers. At that time, an article appeared that suggested that part of the reason for such unethical business behavior may stem from the fact that cheating has become more prevalent among business students (*Chronicle of Higher Education*, February 10, 2009). The article reported that 56 percent of business students admitted to cheating at some time during their academic career as compared to 47 percent of nonbusiness students.

Cheating has been a concern of the dean of the College of Business at Bayview University for several years. Some faculty members in the college believe that cheating is more widespread at Bayview than at other universities, while other faculty members think that cheating is not a major problem in the college. To resolve some of these issues, the dean commissioned a study to assess the current ethical behavior of business students at Bayview. As part of this study, an anonymous exit survey was administered to a sample of 90 business students from this year's graduating class. Responses to the following questions were used to obtain data regarding three types of cheating.

During your time at Bayview, did you ever present work copied off the Internet as your own?

Yes \_\_\_\_\_ No \_\_\_\_

During your time at Bayview, did you ever copy answers off another student's exam?

Yes \_\_\_\_\_ No \_\_\_\_

During your time at Bayview, did you ever collaborate with other students on projects that were supposed to be completed individually?

Yes \_\_\_\_\_ No \_\_\_\_

Any student who answered Yes to one or more of these questions was considered to have been involved in some type of cheating. A portion of the data collected follows. The complete data set is in the file named Bayview.

|         | Student | Copied<br>from<br>Internet | Copied<br>on<br>Exam | Collaborated<br>on Individual<br>Project | Gender |
|---------|---------|----------------------------|----------------------|------------------------------------------|--------|
| 0.1     | 1       | No                         | No                   | No                                       | Female |
| B file  | 2       | No                         | No                   | No                                       | Male   |
|         | 3       | Yes                        | No                   | Yes                                      | Male   |
| Bayview | 4       | Yes                        | Yes                  | No                                       | Male   |
|         | 5       | No                         | No                   | Yes                                      | Male   |
|         | 6       | Yes                        | No                   | No                                       | Female |
|         |         |                            |                      |                                          |        |
|         |         |                            |                      |                                          |        |
|         |         |                            |                      |                                          |        |
|         | 88      | No                         | No                   | No                                       | Male   |
|         | 89      | No                         | Yes                  | Yes                                      | Male   |
|         | 90      | No                         | No                   | No                                       | Female |

# **Managerial Report**

Prepare a report for the dean of the college that summarizes your assessment of the nature of cheating by business students at Bayview University. Be sure to include the following items in your report.

- 1. Use descriptive statistics to summarize the data and comment on your findings.
- 2. Develop 95% confidence intervals for the proportion of all students, the proportion of male students, and the proportion of female students who were involved in some type of cheating.
- **3.** Conduct a hypothesis test to determine if the proportion of business students at Bayview University who were involved in some type of cheating is less than that of business students at other institutions as reported by the *Chronicle of Higher Eudcation*.
- **4.** Conduct a hypothesis test to determine if the proportion of business students at Bayview University who were involved in some form of cheating is less than that of nonbusiness students at other institutions as reported by the *Chronicle of Higher Education*.
- 5. What advice would you give to the dean based upon your analysis of the data?

# Appendix 9.1 Hypothesis Testing with Minitab

We describe the use of Minitab to conduct hypothesis tests about a population mean and a population proportion.

### Population Mean: $\sigma$ Known

We illustrate using the MaxFlight golf ball distance example in Section 9.3. The data are in column C1 of a Minitab worksheet. The population standard deviation  $\sigma = 12$  is assumed known and the level of significance is  $\alpha = .05$ . The following steps can be used to test the hypothesis  $H_0$ :  $\mu = 295$  versus  $H_a$ :  $\mu \neq 295$ .



Step 1. Select the Stat menuStep 2. Choose Basic StatisticsStep 3. Choose 1-Sample Z

Step 4. When the 1-Sample Z dialog box appears: Enter C1 in the Samples in columns box Enter 12 in the Standard deviation box Select Perform Hypothesis Test Enter 295 in the Hypothesized mean box Select Options
Step 5. When the 1-Sample Z-Options dialog box appears: Enter 95 in the Confidence level box\* Select not equal in the Alternative box Click OK
Step 6. Click OK

In addition to the hypothesis testing results, Minitab provides a 95% confidence interval for the population mean.

The procedure can be easily modified for a one-tailed hypothesis test by selecting the less than or greater than option in the **Alternative** box in step 5.

### Population Mean: *o* Unknown



The ratings that 60 business travelers gave for Heathrow Airport are entered in column C1 of a Minitab worksheet. The level of significance for the test is  $\alpha = .05$ , and the population standard deviation  $\sigma$  will be estimated by the sample standard deviation *s*. The following steps can be used to test the hypothesis  $H_0$ :  $\mu \le 7$  against  $H_a$ :  $\mu > 7$ .

- Step 1. Select the Stat menu
- Step 2. Choose Basic Statistics
- Step 3. Choose 1-Sample t

Step 4. When the 1-Sample t dialog box appears:

Enter C1 in the **Samples in columns** box Select **Perform Hypothesis Test** Enter 7 in the **Hypothesized mean** box Select **Options** 

Step 5. When the 1-Sample t-options dialog box appears: Enter 95 in the Confidence level box Select greater than in the Alternative box Click OK

#### Step 6. Click OK

The Heathrow Airport rating study involved a greater than alternative hypothesis. The preceding steps can be easily modified for other hypothesis tests by selecting the less than or not equal options in the **Alternative** box in step 5.

### **Population Proportion**



We illustrate using the Pine Creek golf course example in Section 9.5. The data with responses Female and Male are in column C1 of a Minitab worksheet. Minitab uses an alphabetical ordering of the responses and selects the *second response* for the population proportion of interest. In this example, Minitab uses the alphabetical ordering Female-Male to provide results for the population proportion of Male responses. Because Female is the response of interest, we change Minitab's ordering as follows: Select any cell in the column

<sup>\*</sup>Minitab provides both hypothesis testing and interval estimation results simultaneously. The user may select any confidence level for the interval estimate of the population mean: 95% confidence is suggested here.

and use the sequence: Editor > Column > Value Order. Then choose the option of entering a user-specified order. Enter Male-Female in the **Define-an-order** box and click OK. Minitab's 1 Proportion routine will then provide the hypothesis test results for the population proportion of female golfers. We proceed as follows:

Step 1. Select the Stat menu
Step 2. Choose Basic Statistics
Step 3. Choose 1 Proportion
Step 4. When the 1 Proportion dialog box appears:

Enter C1 in the Samples in Columns box
Select Perform Hypothesis Test
Enter .20 in the Hypothesized proportion box
Select Options

Step 5. When the 1 Proportion-Options dialog box appears:

Enter 95 in the Confidence level box
Select greater than in the Alternative box
Select Use test and interval based on normal distribution
Click OK

# Appendix 9.2 Hypothesis Testing with Excel

Excel does not provide built-in routines for the hypothesis tests presented in this chapter. To handle these situations, we present Excel worksheets that we designed to use as templates for testing hypotheses about a population mean and a population proportion. The worksheets are easy to use and can be modified to handle any sample data. The worksheets are available on the website that accompanies this book.

### Population Mean: $\sigma$ Known

We illustrate using the MaxFlight golf ball distance example in Section 9.3. The data are in column A of an Excel worksheet. The population standard deviation  $\sigma = 12$  is assumed known and the level of significance is  $\alpha = .05$ . The following steps can be used to test the hypothesis  $H_0$ :  $\mu = 295$  versus  $H_a$ :  $\mu \neq 295$ .



Refer to Figure 9.11 as we describe the procedure. The worksheet in the background shows the cell formulas used to compute the results shown in the foreground worksheet. The data are entered into cells A2:A51. The following steps are necessary to use the template for this data set.

- **Step 1.** Enter the data range A2:A51 into the =COUNT cell formula in cell D4
- Step 2. Enter the data range A2:A51 into the =AVERAGE cell formula in cell D5
- **Step 3.** Enter the population standard deviation  $\sigma = 12$  into cell D6
- Step 4. Enter the hypothesized value for the population mean 295 into cell D8

The remaining cell formulas automatically provide the standard error, the value of the test statistic z, and three p-values. Because the alternative hypothesis ( $\mu_0 \neq 295$ ) indicates a two-tailed test, the p-value (Two Tail) in cell D15 is used to make the rejection decision. With p-value = .1255 >  $\alpha$  = .05, the null hypothesis cannot be rejected. The p-values in cells D13 or D14 would be used if the hypotheses involved a one-tailed test.

This template can be used to make hypothesis testing computations for other applications. For instance, to conduct a hypothesis test for a new data set, enter the new sample

# FIGURE 9.11 EXCEL WORKSHEET FOR HYPOTHESIS TESTS ABOUT A POPULATION MEAN WITH $\sigma$ KNOWN

|       | Α           | В         | С                  |      |            | D E                    |              |                     |             |            |             |
|-------|-------------|-----------|--------------------|------|------------|------------------------|--------------|---------------------|-------------|------------|-------------|
| 1     | Yards       |           | I                  | Туро | othesis Te | est Al                 | bout a       | a Population Mean   |             |            |             |
| 2     | 303         |           | Wit                |      |            |                        | σ <b>Κ</b> ι | nown                |             |            |             |
| 3     | 282         |           |                    |      |            |                        |              |                     |             |            |             |
| 4     | 289         |           |                    |      | Sample     | Size                   | =CC          | OUNT(A2:A51)        |             |            |             |
| 5     | 298         |           |                    | S    | Sample M   | ean                    | =AV          | TERAGE(A2:A51)      |             |            |             |
| 6     | 283         |           | Population         | on S | td. Devia  | tion                   | 12           |                     |             |            |             |
| 7     | 317         |           |                    | II   |            |                        |              |                     |             |            |             |
| 8     | 297         |           | Hypothesized Value |      |            | 295                    |              |                     |             |            |             |
| 9     | 308         |           | <u> </u>           |      |            |                        |              |                     |             |            |             |
| 10    | 317         |           |                    | Sta  | indard E   | rror                   | =D6          | /SQRT(D4)           |             |            |             |
| 11    | 293         |           |                    | T    | est Statis | tic z                  | =(D          | 5-D8)/D10           |             |            |             |
| 12    | 284         |           |                    | . 1  | (T         | <b>P</b> - <b>•1</b> ) | NIC          |                     |             |            |             |
| 13    | 290         |           | <i>p</i> -va       | alue | (Lower     |                        | =NC          | DRMSDIST(DTT)       |             |            |             |
| 14    | 304         |           | <i>p</i> -v        |      | (Upper ]   |                        | 2*1          | $\frac{13}{110}$    |             |            |             |
| 15    | 290         |           | <i>p</i>           | -vai | ue (1wo )  | (all)                  | =2*1         | MIN(D13,D14)        |             |            |             |
| 10    | 205         |           |                    |      | •          | 1                      | D            | С                   |             | D          | Б           |
| 17    | 303         |           |                    | 1    | A          |                        | D            | Hypothesis Test     | About a I   | Dopulation | E<br>n Moon |
| 50    | 301         |           |                    | 2    | 303        |                        |              | W                   | own         |            |             |
| 51    | 292         |           |                    | 23   | 282        |                        |              | •••                 | vv 11       |            |             |
| 52    | 272         |           |                    | 4    | 289        |                        |              | Sar                 | nple Size   | 50         |             |
|       |             | 1         | I                  | 5    | 298        |                        |              | Sam                 | ole Mean    | 297.6      |             |
|       |             |           |                    | 6    | 283        |                        |              | Population Std. I   | Deviation   | 12         |             |
|       |             |           |                    | 7    | 317        |                        |              |                     |             |            |             |
|       |             |           |                    | 8    | 297        |                        |              | Hypothesiz          | ed Value    | 295        |             |
|       |             |           |                    | 9    | 308        |                        |              |                     |             |            |             |
|       |             |           |                    | 10   | 317        |                        |              | Standa              | rd Error    | 1.70       |             |
|       |             |           |                    | 11   | 293        |                        |              | Test S              | statistic z | 1.53       |             |
|       |             |           |                    | 12   | 284        |                        |              |                     |             |            |             |
|       |             |           |                    | 13   | 290        |                        |              | <i>p</i> -value (Lo | wer Tail)   | 0.9372     |             |
|       |             |           |                    | 14   | 304        |                        |              | <i>p</i> -value (Up | per Tail)   | 0.0628     |             |
|       |             |           |                    | 15   | 290        |                        |              | <i>p</i> -value (7  | (wo Tail)   | 0.1255     |             |
|       |             |           |                    | 16   | 311        |                        |              |                     |             |            |             |
| Note  | : Rows 18 t | to 48 are |                    | 17   | 305        |                        |              |                     |             |            |             |
| hidde | en.         |           |                    | 49   | 303        |                        |              |                     |             |            |             |
|       |             |           |                    | 50   | 301        |                        |              |                     |             |            |             |
|       |             |           |                    | 51   | 292        |                        |              |                     |             |            |             |
|       |             |           |                    | 52   |            |                        |              |                     |             |            |             |

data into column A of the worksheet. Modify the formulas in cells D4 and D5 to correspond to the new data range. Enter the population standard deviation into cell D6 and the hypothesized value for the population mean into cell D8 to obtain the results. If the new sample data have already been summarized, the new sample data do not have to be entered into the worksheet. In this case, enter the sample size into cell D4, the sample mean into cell D5, the population standard deviation into cell D6, and the hypothesized value for the population mean into cell D8 to obtain the results. The worksheet in Figure 9.11 is available in the file Hyp Sigma Known on the website that accompanies this book.

# Population Mean: $\sigma$ Unknown



We illustrate using the Heathrow Airport rating example in Section 9.4. The data are in column A of an Excel worksheet. The population standard deviation  $\sigma$  is unknown and will be estimated by the sample standard deviation *s*. The level of significance is  $\alpha = .05$ . The following steps can be used to test the hypothesis  $H_0: \mu \le 7$  versus  $H_a: \mu > 7$ . Refer to Figure 9.12 as we describe the procedure. The background worksheet

Hyp Sigma Unknown shows the cell formulas used to compute the results shown in the foreground version of

# **FIGURE 9.12** EXCEL WORKSHEET FOR HYPOTHESIS TESTS ABOUT A POPULATION MEAN WITH $\sigma$ UNKNOWN

|                  | А            | В      | C D                                     |                                             |               |          |                              |         | E |  |  |
|------------------|--------------|--------|-----------------------------------------|---------------------------------------------|---------------|----------|------------------------------|---------|---|--|--|
| 1                | Rating       |        | Hypothesis Test About a Population Mean |                                             |               |          |                              |         |   |  |  |
| 2                | 5            |        |                                         |                                             | With $\sigma$ | Unknow   | n                            |         |   |  |  |
| 3                | 7            |        |                                         |                                             |               |          |                              |         |   |  |  |
| 4                | 8            |        | Sample Size                             | =C                                          | OUNT(A2       | 2:A61)   |                              |         |   |  |  |
| 5                | 7            |        | Sample Mean                             | =A                                          | VERAGE        | (A2:A61) |                              |         |   |  |  |
| 6                | 8            |        | Sample Std. Deviation                   | =S7                                         | TDEV(A2       | :A61)    |                              |         |   |  |  |
| 7                | 8            |        |                                         |                                             |               |          |                              |         |   |  |  |
| 8                | 8            |        | Hypothesized Value                      | 7                                           | 7             |          |                              |         |   |  |  |
| 9                | 7            |        |                                         |                                             |               |          |                              |         |   |  |  |
| 10               | 8            |        | Standard Error                          | =D                                          | =D6/SQRT(D4)  |          |                              |         |   |  |  |
| 11               | 10           |        | Test Statistic t                        | =([                                         | D5-D8)/D1     | 0        |                              |         |   |  |  |
| 12               | 6            |        | Degrees of Freedom                      | =D                                          | 4-1           |          |                              |         |   |  |  |
| 13               | 7            |        |                                         |                                             |               |          |                              |         |   |  |  |
| 14               | 8            |        | <i>p</i> -value (Lower Tail)            | =IF                                         | F(D11<0,T     | DIST(-D  | 11,D12,1),1-TDIST(D11,I      | D12,1)) |   |  |  |
| 15               | 8            |        | <i>p</i> -value (Upper Tail)            | =1-                                         | D14           |          |                              |         |   |  |  |
| 16               | 9            |        | p-value (Two Tail)                      | =2*                                         | *MIN(D14      | ,D15)    |                              |         |   |  |  |
| 17               | 7            |        |                                         |                                             |               |          |                              |         |   |  |  |
| 59               | 7            |        |                                         |                                             | Α             | В        | С                            | D       | E |  |  |
| 60               | 7            |        |                                         | 1 Rating Hypothesis Test About a Population |               |          |                              |         |   |  |  |
| 61               | 8            |        |                                         | <b>2</b> 5 With $\sigma$ Unknown            |               |          |                              |         |   |  |  |
| 62               |              |        |                                         | 3                                           | 7             |          |                              |         |   |  |  |
|                  |              |        |                                         | 4                                           | 8             |          | Sample Size                  | 60      |   |  |  |
|                  |              |        |                                         | 5                                           | 7             |          | Sample Mean                  | 7.25    |   |  |  |
|                  |              |        |                                         | 6                                           | 8             |          | Sample Std. Deviation        | 1.05    |   |  |  |
|                  |              |        |                                         | 7                                           | 8             |          |                              |         |   |  |  |
|                  |              |        |                                         | 8                                           | 8             |          | Hypothesized Value           | 7       |   |  |  |
|                  |              |        |                                         | 9                                           | 7             |          |                              |         |   |  |  |
|                  |              |        |                                         | 10                                          | 8             |          | Standard Error               | 0.136   |   |  |  |
|                  |              |        |                                         | 11                                          | 10            |          | Test Statistic t             | 1.841   |   |  |  |
|                  |              |        |                                         | 12                                          | 6             |          | Degrees of Freedom           | 59      |   |  |  |
|                  |              |        |                                         | 13                                          | 7             |          |                              |         |   |  |  |
|                  |              |        |                                         | 14                                          | 8             |          | <i>p</i> -value (Lower Tail) | 0.9647  |   |  |  |
|                  |              |        |                                         | 15                                          | 8             |          | <i>p</i> -value (Upper Tail) | 0.0353  |   |  |  |
|                  |              |        |                                         | 16                                          | 9             |          | p-value (Two Tail)           | 0.0706  |   |  |  |
|                  |              |        |                                         | 17                                          | 7             |          |                              |         |   |  |  |
| T. 4 .           | 10 /         | 50     |                                         | 59                                          | 7             |          |                              |         |   |  |  |
| vote: K<br>iddar | cows 18 to . | so are |                                         | 60                                          | 7             |          |                              |         |   |  |  |
| iuuen.           |              |        |                                         | 61                                          | 8             |          |                              |         |   |  |  |
|                  |              |        |                                         | 62                                          |               |          |                              |         |   |  |  |

the worksheet. The data are entered into cells A2:A61. The following steps are necessary to use the template for this data set.

- **Step 1.** Enter the data range A2:A61 into the =COUNT cell formula in cell D4
- **Step 2.** Enter the data range A2:A61 into the =AVERAGE cell formula in cell D5
- **Step 3.** Enter the data range A2:A61 into the =STDEV cell formula in cell D6
- Step 4. Enter the hypothesized value for the population mean 7 into cell D8

The remaining cell formulas automatically provide the standard error, the value of the test statistic *t*, the number of degrees of freedom, and three *p*-values. Because the alternative hypothesis ( $\mu > 7$ ) indicates an upper tail test, the *p*-value (Upper Tail) in cell D15 is used to make the decision. With *p*-value = .0353 <  $\alpha$  = .05, the null hypothesis is rejected. The *p*-values in cells D14 or D16 would be used if the hypotheses involved a lower tail test or a two-tailed test.

This template can be used to make hypothesis testing computations for other applications. For instance, to conduct a hypothesis test for a new data set, enter the new sample data into column A of the worksheet and modify the formulas in cells D4, D5, and D6 to correspond to the new data range. Enter the hypothesized value for the population mean into cell D8 to obtain the results. If the new sample data have already been summarized, the new sample data do not have to be entered into the worksheet. In this case, enter the sample size into cell D4, the sample mean into cell D5, the sample standard deviation into cell D6, and the hypothesized value for the population mean into cell D8 to obtain the results. The worksheet in Figure 9.12 is available in the file Hyp Sigma Unknown on the website that accompanies this book.

#### **Population Proportion**



We illustrate using the Pine Creek golf course survey data presented in Section 9.5. The data of Male or Female golfer are in column A of an Excel worksheet. Refer to Figure 9.13 as we describe the procedure. The background worksheet shows the cell formulas used to compute the results shown in the foreground worksheet. The data are entered into cells A2:A401. The following steps can be used to test the hypothesis  $H_0$ :  $p \le .20$  versus  $H_a$ : p > .20.

- Step 1. Enter the data range A2:A401 into the =COUNTA cell formula in cell D3
- **Step 2.** Enter Female as the response of interest in cell D4
- **Step 3.** Enter the data range A2:A401 into the =COUNTIF cell formula in cell D5
- Step 4. Enter the hypothesized value for the population proportion .20 into cell D8

The remaining cell formulas automatically provide the standard error, the value of the test statistic z, and three p-values. Because the alternative hypothesis (p > .20) indicates an upper tail test, the p-value (Upper Tail) in cell D14 is used to make the decision. With p-value =  $.0062 < \alpha = .05$ , the null hypothesis is rejected. The p-values in cells D13 or D15 would be used if the hypothesis involved a lower tail test or a two-tailed test.

This template can be used to make hypothesis testing computations for other applications. For instance, to conduct a hypothesis test for a new data set, enter the new sample data into column A of the worksheet. Modify the formulas in cells D3 and D5 to correspond to the new data range. Enter the response of interest into cell D4 and the hypothesized value for the population proportion into cell D8 to obtain the results. If the new sample data have already been summarized, the new sample data do not have to be entered into the worksheet. In this case, enter the sample size into cell D3, the sample proportion into cell D6, and the hypothesized value for the population proportion into cell D8 to obtain the results. The worksheet in Figure 9.13 is available in the file Hypothesis p on the website that accompanies this book.

#### FIGURE 9.13 EXCEL WORKSHEET FOR HYPOTHESIS TESTS ABOUT A POPULATION PROPORTION

|           | Α                     | В          |                    | С                                                                             |                                                                   | D                                                                   |            |                                                                                                                   | Е                                                                                                           |                                                                                 |              |
|-----------|-----------------------|------------|--------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------|------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------|
| 1         | Golfer                |            | Нур                | othesi                                                                        | is Test                                                           | About a Population Proportion                                       |            |                                                                                                                   |                                                                                                             |                                                                                 |              |
| 2         | Female                |            |                    |                                                                               |                                                                   |                                                                     |            |                                                                                                                   |                                                                                                             |                                                                                 |              |
| 3         | Male                  |            | Sample Si          | ize                                                                           |                                                                   | =COUNTA(A2:A401)                                                    |            |                                                                                                                   |                                                                                                             |                                                                                 |              |
| 4         | Female                |            | Response           | of In                                                                         | terest                                                            | Female                                                              |            |                                                                                                                   |                                                                                                             |                                                                                 |              |
| 5         | Male                  |            | Count for          | Resp                                                                          | onse                                                              | =CC                                                                 | DUNTIF(A2  | 2:A401,D4)                                                                                                        |                                                                                                             |                                                                                 |              |
| 6         | Male                  |            | Sample P           | ropor                                                                         | tion                                                              | =D5                                                                 | 5/D3       |                                                                                                                   |                                                                                                             |                                                                                 |              |
| 7         | Female                |            |                    |                                                                               |                                                                   |                                                                     |            |                                                                                                                   |                                                                                                             |                                                                                 |              |
| 8         | Male                  |            | Hypothesized Value |                                                                               | 0.20                                                              | )                                                                   |            |                                                                                                                   |                                                                                                             |                                                                                 |              |
| 9         | Male                  |            |                    |                                                                               |                                                                   |                                                                     |            |                                                                                                                   |                                                                                                             |                                                                                 |              |
| 10        | Female                |            | Standard           | Erro                                                                          | r                                                                 | =SQ                                                                 | QRT(D8*(1- | D8)/D3)                                                                                                           |                                                                                                             |                                                                                 |              |
| 11        | Male                  |            | Test Statis        | stic z                                                                        |                                                                   | =(D                                                                 | 6-D8)/D10  |                                                                                                                   |                                                                                                             |                                                                                 |              |
| 12        | Male                  |            |                    |                                                                               |                                                                   |                                                                     |            |                                                                                                                   |                                                                                                             |                                                                                 |              |
| 13        | Male                  |            | <i>p</i> -value (L | lower                                                                         | Tail)                                                             | =NC                                                                 | DRMSDIST   | (D11)                                                                                                             |                                                                                                             |                                                                                 |              |
| 14        | Male                  |            | <i>p</i> -value (U | Jpper                                                                         | Tail)                                                             | =1-I                                                                | D13        |                                                                                                                   |                                                                                                             |                                                                                 |              |
| 15        | Male                  |            | <i>p</i> -value (T | wo Ta                                                                         | ail)                                                              | =2*                                                                 | MIN(D13,D  | 014)                                                                                                              |                                                                                                             |                                                                                 |              |
| 16        | Female                |            |                    |                                                                               |                                                                   |                                                                     |            |                                                                                                                   |                                                                                                             |                                                                                 |              |
| 400       | Male                  |            |                    |                                                                               | A                                                                 |                                                                     | B          | (                                                                                                                 | 2                                                                                                           | D                                                                               | E            |
| 401       | Male                  |            |                    | 1                                                                             | Gol                                                               | fer                                                                 |            | Hypothesi                                                                                                         | s Test Abou                                                                                                 | it a Population                                                                 | n Proportion |
| 402       |                       |            |                    | 2                                                                             | Fem                                                               |                                                                     |            | ~                                                                                                                 |                                                                                                             | 100                                                                             |              |
|           |                       |            |                    | 3                                                                             | Ma                                                                | ile                                                                 |            | Sa                                                                                                                | mple Size                                                                                                   | 400                                                                             |              |
|           |                       |            |                    | 4                                                                             | Hem                                                               | ale                                                                 |            | 10000000000                                                                                                       |                                                                                                             | <b>F</b> 1                                                                      |              |
|           |                       |            |                    | _                                                                             | 1011                                                              | 1                                                                   |            | Response                                                                                                          | of Interest                                                                                                 | Female                                                                          |              |
|           |                       |            |                    | 5                                                                             | Ma                                                                | ile                                                                 |            | Count for                                                                                                         | of Interest<br>Response                                                                                     | Female<br>100                                                                   |              |
|           |                       |            |                    | 5 6                                                                           | Ma                                                                | ile<br>ile                                                          |            | Count for<br>Sample F                                                                                             | Response<br>Proportion                                                                                      | Female<br>100<br>0.2500                                                         |              |
|           |                       |            |                    | 5<br>6<br>7                                                                   | Ma<br>Ma<br>Fem                                                   | ile<br>ile<br>iale                                                  |            | Count for<br>Sample F                                                                                             | of Interest<br>Response<br>Proportion                                                                       | Female<br>100<br>0.2500                                                         |              |
|           |                       |            |                    | 5<br>6<br>7<br>8                                                              | Ma<br>Ma<br>Fem<br>Ma                                             | ile<br>ile<br>iale<br>ile                                           |            | Count for<br>Sample F<br>Hypothes                                                                                 | of Interest<br>Response<br>Proportion<br>ized Value                                                         | Female           100           0.2500           0.20                            |              |
|           |                       |            |                    | 5<br>6<br>7<br>8<br>9                                                         | Ma<br>Ma<br>Fem<br>Ma<br>Ma                                       | ile<br>ile<br>ile<br>ile<br>ile                                     |            | Count for<br>Sample F<br>Hypothes                                                                                 | of Interest<br>Response<br>Proportion<br>ized Value                                                         | Female<br>100<br>0.2500<br>0.20                                                 |              |
|           |                       |            |                    | 5<br>6<br>7<br>8<br>9<br>10                                                   | Ma<br>Ma<br>Fem<br>Ma<br>Fem                                      | ile<br>ile<br>iale<br>ile<br>ile<br>iale                            |            | Count for<br>Sample I<br>Hypothes                                                                                 | roportion<br>roportion<br>ized Value<br>ard Error                                                           | Female<br>100<br>0.2500<br>0.20<br>0.0200<br>0.0200                             |              |
|           |                       |            |                    | 5<br>6<br>7<br>8<br>9<br>10<br>11                                             | Ma<br>Ma<br>Fem<br>Ma<br>Fem<br>Ma                                | ale<br>ale<br>ale<br>ale<br>ale<br>ale<br>ale                       |            | Count for<br>Sample F<br>Hypothes<br>Stand<br>Test                                                                | of Interest<br>Response<br>Proportion<br>ized Value<br>ard Error<br>Statistic z                             | Female<br>100<br>0.2500<br>0.20<br>0.020<br>0.0200<br>2.50                      |              |
|           |                       |            |                    | 5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>12                                 | Ma<br>Ma<br>Fem<br>Ma<br>Fem<br>Ma<br>Ma                          | lle<br>lle<br>hale<br>hle<br>hle<br>hle<br>hle<br>hle<br>hle        |            | Count for<br>Sample F<br>Hypothes<br>Stand<br>Test                                                                | of Interest<br>Response<br>Proportion<br>ized Value<br>ard Error<br>Statistic z                             | Female<br>100<br>0.2500<br>0.20<br>0.0200<br>2.50<br>0.0038                     |              |
|           |                       |            |                    | 5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13                                 | Ma<br>Ma<br>Fem<br>Ma<br>Fem<br>Ma<br>Ma<br>Ma                    | lle<br>lle<br>lle<br>lle<br>lle<br>lle<br>lle<br>lle                |            | Count for<br>Sample F<br>Hypothes<br>Stand<br>Test                                                                | of Interest<br>Response<br>Proportion<br>ized Value<br>ard Error<br>Statistic z<br>ower Tail)               | Female<br>100<br>0.2500<br>0.20<br>0.0200<br>2.50<br>0.9938<br>0.0262           |              |
|           |                       |            |                    | 5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14                           | Ma<br>Ma<br>Fem<br>Ma<br>Fem<br>Ma<br>Ma<br>Ma                    | lle<br>lle<br>lle<br>lle<br>lle<br>lle<br>lle<br>lle                |            | Count for<br>Sample F<br>Hypothes<br>Stand<br>Test<br><i>p</i> -value (L<br><i>p</i> -value (U                    | of Interest<br>Response<br>Proportion<br>ized Value<br>ard Error<br>Statistic z<br>ower Tail)<br>pper Tail) | Female<br>100<br>0.2500<br>0.20<br>0.0200<br>2.50<br>0.9938<br>0.0062<br>0.0124 |              |
|           |                       | . 200      |                    | 5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16               | Ma<br>Ma<br>Fem<br>Ma<br>Fem<br>Ma<br>Ma<br>Ma<br>Ma              | ale<br>ale<br>ale<br>ale<br>ale<br>ale<br>ale<br>ale<br>ale<br>ale  |            | Count for<br>Sample F<br>Hypothes<br>Stand<br>Test<br><i>p</i> -value (L<br><i>p</i> -value (U<br><i>p</i> -value | of Interest<br>Response<br>Proportion<br>ized Value<br>ard Error<br>Statistic z<br>ower Tail)<br>(Two Tail) | Female<br>100<br>0.2500<br>0.20<br>0.0200<br>2.50<br>0.9938<br>0.0062<br>0.0124 |              |
| Na        | ote: Rows 17          | to 399 are |                    | 5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16               | Ma<br>Ma<br>Fem<br>Ma<br>Fem<br>Ma<br>Ma<br>Ma<br>Ma<br>Fem       | lle<br>lle<br>lle<br>lle<br>lle<br>lle<br>lle<br>lle                |            | Count for<br>Sample F<br>Hypothes<br>Stand<br>Test<br><i>p</i> -value (L<br><i>p</i> -value (U<br><i>p</i> -value | of Interest<br>Response<br>Proportion<br>ized Value<br>ard Error<br>Statistic z<br>ower Tail)<br>(Two Tail) | Female<br>100<br>0.2500<br>0.20<br>0.0200<br>2.50<br>0.9938<br>0.0062<br>0.0124 |              |
| Na<br>hia | pte: Rows 17<br>dden. | to 399 are |                    | 5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>400        | Ma<br>Ma<br>Fem<br>Ma<br>Fem<br>Ma<br>Ma<br>Ma<br>Fem<br>Ma       | ale<br>ale<br>ale<br>ale<br>ale<br>ale<br>ale<br>ale<br>ale<br>ale  |            | Count for<br>Sample F<br>Hypothes<br>Stand<br>Test<br><i>p</i> -value (L<br><i>p</i> -value (U<br><i>p</i> -value | of Interest<br>Response<br>Proportion<br>ized Value<br>ard Error<br>Statistic z<br>ower Tail)<br>(Two Tail) | Female<br>100<br>0.2500<br>0.20<br>0.0200<br>2.50<br>0.9938<br>0.0062<br>0.0124 |              |
| No<br>hio | nte: Rows 17<br>dden. | to 399 are |                    | 5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>400<br>401 | Ma<br>Ma<br>Fem<br>Ma<br>Fem<br>Ma<br>Ma<br>Ma<br>Fem<br>Ma<br>Ma | alle<br>ale<br>ale<br>ale<br>ale<br>ale<br>ale<br>ale<br>ale<br>ale |            | Count for<br>Sample F<br>Hypothes<br>Stand<br>Test<br><i>p</i> -value (L<br><i>p</i> -value (U<br><i>p</i> -value | of Interest<br>Response<br>Proportion<br>ized Value<br>ard Error<br>Statistic z<br>ower Tail)<br>(Two Tail) | Female<br>100<br>0.2500<br>0.20<br>0.0200<br>2.50<br>0.9938<br>0.0062<br>0.0124 |              |

# Appendix 9.3 Hypothesis Testing with StatTools

In this appendix we show how StatTools can be used to conduct hypothesis tests about a population mean for the  $\sigma$  unknown case

# Population Mean: $\sigma$ Unknown Case



In this case the population standard deviation  $\sigma$  will be estimated by the sample standard deviation *s*. We use the example discussed in Section 9.4 involving ratings that 60 business travelers gave for Heathrow Airport.

Begin by using the Data Set Manager to create a StatTools data set for these data using the procedure described in the appendix in Chapter 1. The following steps can be used to test the hypothesis  $H_0$ :  $\mu \le 7$  against  $H_a$ :  $\mu > 7$ .

- Step 1. Click the StatTools tab on the Ribbon
- Step 2. In the Analyses group, click Statistical Inference
- Step 3. Choose the Hypothesis Test option
- Step 4. Choose Mean/Std. Deviation
- **Step 5.** When the StatTools—Hypothesis Test for Mean/Std. Deviation dialog box appears:
  - For Analysis Type, choose One-Sample Analysis

In the Variables section, select Rating

In the Hypothesis Tests to Perform section:

Select the Mean option

Enter 7 in the **Null Hypothesis Value** box

- Select Greater Than Null Value (One-Tailed Test) in the Alternative Hypothesis box
- If selected, remove the check in the **Standard Deviation** box Click **OK**

The results from the hypothesis test will appear. They include the *p*-value and the value of the test statistic.